Contents

1 Introduction ... 1

2 Variational problems with linear growth: the general setting 13
 2.1 Construction of a solution for the dual problem which is of
 class $W^{1}_{2,\text{loc}}(\Omega; \mathbb{R}^{nN})$ 14
 2.1.1 The dual problem 14
 2.1.2 Regularization 16
 2.1.3 $W^{1}_{2,\text{loc}}$-regularity for the dual problem 19
 2.2 A uniqueness theorem for the dual problem 20
 2.3 Partial $C^{1,\alpha}$- and $C^{0,\alpha}$-regularity, respectively, for generalized
 minimizers and for the dual solution 25
 2.3.1 Partial $C^{1,\alpha}$-regularity of generalized minimizers 26
 2.3.2 Partial $C^{0,\alpha}$-regularity of the dual solution 29
 2.4 Degenerate variational problems with linear growth 32
 2.4.1 The duality relation for degenerate problems 33
 2.4.2 Application: an intrinsic regularity theory for σ 39

3 Variational integrands with (s, μ, q)-growth 41
 3.1 Existence in Orlicz-Sobolev spaces 42
 3.2 The notion of (s, μ, q)-growth – examples 44
 3.3 A priori gradient bounds and local $C^{1,\alpha}$-estimates for scalar
 and structured vector-valued problems 50
 3.3.1 Regularization 52
 3.3.2 A priori L^q-estimates 54
 3.3.3 Proof of Theorem 3.16 61
 3.3.4 Conclusion 67
 3.4 Partial regularity in the general vectorial setting 69
 3.4.1 Regularization 69
 3.4.2 A Caccioppoli-type inequality 70
 3.4.3 Blow-up ... 72
 3.4.3.1 Blow-up and limit equation 74
 3.4.3.2 An auxiliary proposition 76
 3.4.3.3 Strong convergence 83
 3.4.3.4 Conclusion 86
 3.4.4 Iteration ... 87