1 When I Encountered Tobacco BY-2 Cells!
TOSHIYUKI NAGATA

1 Introduction ... 1
2 Encounter .. 1
3 Synchronization .. 3
4 Distribution ... 4
5 Concluding Remarks ... 5
References ... 5

Section I: Cell Cycle

2 Improvements of the Molecular Toolbox for Cell Cycle Studies in Tobacco BY-2 Cells
JÉRÔME JOUBÈS, DIRK INZÉ, and DANNY GEELEN (With 5 Figures)

1 Introduction .. 7
2 Genome-Wide Expression Analysis of Cell Cycle Modulated Genes in Tobacco BY-2 Cells ... 8
3 A Set of Gateway™ Compatible Binary T-DNA Destination Vectors for Cell Cycle Gene Function Analysis in BY-2 Cells 11
4 Protein Localization in Tobacco BY-2 Cells by Means of GFP-Tagging ... 14
5 Localization of Cell Cycle Proteins 16
6 Conclusion .. 20
References ... 20

3 Transcriptional Regulation During the Plant Cell Cycle: Involvement of Myb Proteins in Cyclin B Transcription
MASAKI ITO (With 2 Figures)

1 Introduction .. 24
2 Mechanisms of G2/M Phase-Specific Transcription in Plants .. 25
 2.1 G2/M Phase-Specific Expression of B-Type Cyclin Genes 25
 2.2 The cis Element Controlling B-Type Cyclin Promoter Activity . 26
2.3 MSA Elements Provide a Common Mechanism for G2/M Phase Transcription .. 26
2.4 Factors that Bind to the MSA Motif .. 27
2.5 Putative Factors that Bind to cis Elements Involved in Cell Cycle Phase-Independent Activation 28
3 Mechanisms of G2/M Phase-Specific Transcription in Animal Cells .. 29
 3.1 Genes for B-Type Cyclins and Co-Expressed Genes 29
 3.2 CCAAT Box-Mediated Activation 29
 3.3 Cell Cycle-Dependent Repression 30
 3.3.1 The CDE/CHR Tandem Element 30
 3.3.2 Mechanisms of Repression Mediated by CDE/CHR 31
4 Conclusion .. 32
5 Perspective .. 33
References .. 34

4 Control of the G1/S Phase Transition in Tobacco BY-2 Cells
MASAMI SEKINE and ATSUHIKO SHINMYO (With 2 Figures)

1 Introduction .. 37
2 Control of the G1/S Transition in Animals 38
3 The Rb/E2F Pathway Regulates the G1/S Transition in Plants ... 39
 3.1 Retinoblastoma-Related Protein 39
 3.2 E2F Transcription Factor Family 40
 3.3 Cyclin D ... 43
 3.4 CDK Inhibitors .. 44
4 Conclusions .. 46
References .. 48

5 Expression, Localisation and Stability of Mitotic Cyclins
in Tobacco BY-2 Cells
YVES PARMENTIER, MARIE CLAIRE CRIQUI, THOMAS POTUSCHAK, and PASCAL GENSCHIK (With 4 Figures)

1 Introduction .. 52
2 Tight Control of Mitotic Cyclin Gene Expression 53
3 APC/C-Dependent Ubiquitylation: After 20 Years of Investigation ... 53
4 Mitotic Cyclin Degradation in BY-2 Cells 55
5 Cyclin Subcellular Localisation: a First Step to Identify Functions ... 57
6 The Spindle Checkpoint and Cyclin Stability 60
7 Mitotic Cyclin Destruction: the Essential Step to Exit Mitosis ... 60
Section II: Cell Biology and Cytoskeleton

6 Molecular Mechanisms of Microtubule Nucleation in Tobacco BY-2 Cells
ANNE-CATHERINE SCHMIT, JEAN CANADAY, VIRGINIE SELTZER, SARAH CAMPAGNE, ETIENNE HERZOG, JEAN-LUC EVRARD, and ANNE-MARIE LAMBERT (With 6 Figures)

1 Introduction .. 66
2 The Microtubular Cycle in Tobacco BY-2 Cells 67
3 The Molecular Mechanism of Microtubule Nucleation in Metazoans and Fungi: γ-Tubulin Complexes 68
4 Identification of Plant Homologues of γ-TuSC Components in Tobacco BY-2 Cells 69
4.1 Plant γ-Tubulin ... 69
4.2 Plant γ-Tubulin Level During the Cell Cycle of Tobacco BY-2 Synchronized Cells, and γ-Tubulin RNA Expression in Tobacco Plants ... 71
4.3 Identification of Arabidopsis Spc97p and Spc98p Homologues in Tobacco BY-2 Cells 71
5 γ-Tubulin Complexes in Plant Cell Extracts 72
6 Functional Assays: Inhibition of Microtubule Nucleation on BY-2 Nuclei Using Anti-γ-Tubulin and Anti-Spc98p Antibodies ... 72
7 The Plant Spc98p as a Microtubule Nucleation Marker in Tobacco BY-2 Cells .. 74
8 Expression of the Spc98p-GFP Fusion Protein in Living Tobacco BY-2 Cells ... 74
9 Conclusion and Perspectives: a Model for Plant Microtubule Nucleation .. 75
References .. 78

7 Dynamic Behavior of Microtubules and Vacuoles at M/G1 Interface Observed in Living Tobacco BY-2 Cells
FUMI KUMAGAI, ARATA YONEDA, NATSUMARO KUTSUNA, and SEIICHIRO HASEZAWA (With 6 Figures)

1 Introduction .. 81
2 Visualization of Microtubules with GFP-α-Tubulin Fusion Protein ... 83
3 Observation of Microtubule Dynamics During M/G1 Transition ... 84
Section III: Physiological and Developmental Aspects

10 Hormonal Control of the Plant Cell Cycle

Luc Roef and Harry Van Onckelen (With 1 Figure)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>132</td>
</tr>
<tr>
<td>2</td>
<td>Cytokinins</td>
<td>132</td>
</tr>
<tr>
<td>3</td>
<td>Auxins</td>
<td>136</td>
</tr>
<tr>
<td>4</td>
<td>Abscisic Acid</td>
<td>138</td>
</tr>
<tr>
<td>5</td>
<td>Jasmonates</td>
<td>139</td>
</tr>
<tr>
<td>6</td>
<td>Other Hormones</td>
<td>140</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion</td>
<td>140</td>
</tr>
<tr>
<td>8</td>
<td>Protocol for the Analysis of Cytokinins, IAA and ABA from BY-2 Cells</td>
<td>141</td>
</tr>
<tr>
<td>8.1</td>
<td>Cytokinin, IAA and Abscisic Acid Extraction from BY-2 for Mass Spectrometric Analysis</td>
<td>141</td>
</tr>
<tr>
<td>8.2</td>
<td>Mass Spectrometric Analysis of Cytokinins</td>
<td>143</td>
</tr>
<tr>
<td>8.3</td>
<td>Mass Spectrometric Analysis of IAA and Abscisic Acid</td>
<td>143</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>

11 Block Points in the Cell Cycle Progression of Plant Cells: Deduced Lessons from Tobacco BY-2 Cells

Toshio Sano, Takashi Shimizu, Kenichi Sakamoto, and Toshiyuki Nagata (With 3 Figures)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>149</td>
</tr>
<tr>
<td>2</td>
<td>Auxin as a Sole Growth Factor for the Proliferation of Plant Cells</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>2B-13 Cell Line as an Auxin-Autotrophic Cells</td>
<td>151</td>
</tr>
<tr>
<td>4</td>
<td>Cell Cycle Block by Phosphate Starvation</td>
<td>153</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion and Perspectives</td>
<td>157</td>
</tr>
<tr>
<td>6</td>
<td>Protocols</td>
<td>157</td>
</tr>
<tr>
<td>6.1</td>
<td>Auxin Starvation of Tobacco BY-2 Cells and Their Re-Entry into the Cell Cycle with the Addition of Auxin</td>
<td>157</td>
</tr>
<tr>
<td>6.2</td>
<td>Phosphate Starvation of Tobacco BY-2 Cells and Their Re-Entry into the Cell Cycle with Phosphate Addition</td>
<td>158</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>158</td>
</tr>
</tbody>
</table>

12 Growth and Physiology of Suspension-Cultured Plant Cells: the Contribution of Tobacco BY-2 Cells to the Study of Auxin Action

Jean-Pierre Renaudin

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>160</td>
</tr>
<tr>
<td>2</td>
<td>The Main Features of Plant Cell Cultures</td>
<td>161</td>
</tr>
<tr>
<td>2.1</td>
<td>General Parameters</td>
<td>161</td>
</tr>
<tr>
<td>2.2</td>
<td>Growth of Plant Cell Cultures</td>
<td>162</td>
</tr>
<tr>
<td>2.3</td>
<td>The Extracellular Medium</td>
<td>163</td>
</tr>
</tbody>
</table>
3 Auxin Effects on Cultured Plant Cells
- 3.1 General Hormone Requirement of Plant Cell Cultures 164
- 3.2 Auxin Requirement of Plant Cell Cultures .. 164
 - 3.2.1 Nature of the Auxin Dose-Response Relationship; Auxin Agonists and Antagonists 164
 - 3.2.2 Metabolism and Transport of Auxin; Cross Talk with Other Hormones 165
 - 3.2.3 Lethality of Auxin Absence ... 167
 - 3.2.4 Toxicity of High Auxin Levels .. 167
- 3.3 The Contribution of Cultured Plant Cells to Study the Effect of Auxin on Cell Expansion .. 168
 - 3.3.1 Cell Expansion Occurs at Low Auxin Levels in Cell Cultures 168
 - 3.3.2 Cell Expansion Is Coupled to the Onset of Differentiation in Cell Cultures 169
 - 3.3.3 Functional Genetics of Cell Expansion in Cell Cultures 170
- 3.4 The Contribution of Cultured Plant Cells to Study the Effect of Auxin on the Cell Cycle ... 171
- 3.5 The Issue of the Cell Cycle Step(s) Affected by Auxin 172
 - 3.5.1 The Control of Ploidy ... 173

4 Auxin Signalling and Effect on Gene Expression
- 4.1 Receptors and Sensitivity .. 174
- 4.2 Early Transduction Events ... 175
- 4.3 The Control of Gene Expression ... 176

5 Conclusion
- References ... 177

13 Dual Pathways for Auxin Regulation of Cell Division and Expansion
ALAN M. JONES, HEMAYET ULLAH, and JIN-GUI CHEN (With 5 Figures)

1 Background ... 181
- 1.1 Dual Auxin Pathways in Plant Cell Expansion and Division 181
- 1.2 Auxin-Binding Protein 1 ... 183
- 1.3 Heterotrimeric G proteins in Plants ... 183

2 Evidence for Auxin Binding Protein 1-Mediated Cell Expansion
- 2.1 Loss of Function Analysis in Tobacco BY-2 Cells .. 184
- 2.2 Gain of Function Analysis in Tobacco Leaves .. 185

3 Evidence for G Protein Involvement in Cell Division
- 3.1 Pharmacological Evidence ... 186
- 3.2 Genetic Evidence .. 187

4 Conclusions ... 190

References ... 190
14 Studies on Dynamic Changes of Organelles Using Tobacco BY-2 as the Model Plant Cell Line
ATSUSHI SAKAI, YUTAKA MIYAZAWA, and TSUNEYOSHI KUROIWA (With 5 Figures)

1 Introduction ... 192
2 Characteristics of Tobacco BY-2 Cells as Material for Analysis of Plant Organelles ... 193
3 Tobacco BY-2 Cells as a Model of Undifferentiated Plant Cells 193
 3.1 Comparative Analyses of Plastid Gene Expression in Proplastids of Tobacco BY-2 Cells and in Chloroplasts of Leaf Mesophyll Cells ... 193
 3.2 Isolation of Proplastid- and Chloroplast-Nuclei, and Comparison of Their Molecular Architectures 194
 3.3 Comparison of Transcriptional Activities in Proplastid-Nuclei from Tobacco BY-2 Cells and Chloroplast-Nuclei from Mature Leaves ... 195
 3.4 Roles of Distinct RNA Polymerases in Transcriptional Regulation ... 197
 3.5 Role of PEP in Nongreen Plastids .. 198
4 Tobacco BY-2 Cells as a Model of Proliferating Plant Cells 199
 4.1 Organelle Dynamics During Proliferation of Tobacco BY-2 Cells ... 199
 4.2 Morphological Changes in Organelles and Organelle Nuclei During Culture ... 200
 4.3 Changes in Organelle DNA Synthesis During Culture 202
 4.4 Organelle DNA Polymerases .. 203
5 Tobacco BY-2 Cells as a Model of Differentiating Plant Cells 204
 5.1 Hormone-Induced Amyloplast Formation in Tobacco BY-2 Cells ... 204
 5.2 Amyloplast Formation in Tobacco BY-2 Cells 205
 5.3 Effects of Auxin and Cytokinin on Amyloplast Formation and Accompanying Changes ... 205
 5.4 Requirement for Transcription and Translation in Nucleo-Cytoplasmic and Organelle Compartments 207
 5.5 Other Changes Associated with Amyloplast Formation in Tobacco BY-2 Cells ... 208
6 Summary ... 209
7 Protocol ... 209
 7.1 Plastid Genes ... 209
 7.2 Preparation and Disruption of Protoplasts 211
 7.3 Isolation of Proplastid-Nuclei .. 211
 7.4 Isolation of Mitochondrial-Nuclei .. 212
 7.5 In Vitro Transcription/DNA Synthesis Using Isolated Organelle-Nuclei ... 213
References .. 213

15 Cell Wall Dynamics in Tobacco BY-2 Cells
RYUSUKE YOKOYAMA, DAIKUKE TANAKA, TAKESHI FUJINO, TAKAO ITOH, and KAZUHIKO NISHITANI (With 3 Figures)
1 Introduction ... 217
2 Suspension Culture of Tobacco BY-2 Cells as a Model System for Cell Wall Studies 218
 2.1 Preparation of Cell Wall Enzymes 218
 2.2 Direct Delivery of Molecular Probes to Cell Wall Space .. 219
 2.3 Tobacco BY-2 Cell Lines with Altered Cell Wall Components by Acclimatization .. 219
 2.4 Cell Wall Regeneration from Protoplasts 221
 2.5 Cell Wall Analyses Using Transformant Cell Lines 222
 2.6 Cell Wall Dynamics During Cell Division 224
3 Concluding Remarks ... 227
References .. 228

16 Regulation of Secondary Metabolism in Tobacco Cell Cultures
SUVI T. HÄKKINEN and KIRSI-MARJA OKSMAN-CALDENTEY (With 5 Figures)
1 Introduction ... 231
2 Alkaloids ... 232
 2.1 Pharmacological Effects of Tobacco Alkaloids 232
 2.2 Nicotine Biosynthesis 234
 2.3 Nicotine Degradation and Other Nicotine-Related Alkaloids .. 236
 2.4 Precursor Feeding ... 238
 2.5 Tobacco BY-2 Cell Culture 239
3 Other Secondary Compounds 240
 3.1 Putrescine Derivatives and Polyamines 240
 3.2 Phenylpropanoids ... 240
 3.3 Sesquiterpenes .. 242
4 Discovering Secondary Metabolite Pathways – Combining Transcriptomics and Metabolomics 243
5 Conclusions ... 244
References .. 245

17 Boron Nutrition of Cultured Tobacco BY-2 Cells
MASARU KOBAYASHI and TORU MATOH (With 7 Figures)
1 Introduction ... 250
2 Intracellular Localization of Boron in Tobacco BY-2 Cells 251
3 Boron-Polysaccharide Complex 252
4 Selection and Characterization of Cells that Tolerate Low Levels of Boron 254
5 Responses to Boron Deprivation in Tobacco BY-2 Cells 258
6 Future Perspective 261
References 262

Section IV: Molecular Biological Aspects

18 In Vitro Transcription Systems from BY-2 Cells
YASUSHI YUKAWA and MASAHIRO SUGIURA (With 9 Figures)

1 Introduction 265
2 Advantages of the BY-2 Cell as Starting Material for In Vitro Transcription Systems 266
3 In Vitro Transcription from Pol I-Dependent Genes 266
4 In Vitro Transcription from Pol II-Dependent Genes 267
5 In Vitro Transcription from Pol III-Dependent Genes 269
 5.1 Transcription from Arabidopsis U6 snRNA Genes 269
 5.2 Transcription from Nuclear tRNA Genes 272
 5.3 Transcriptional Regulation by DNA Methylation of Pol III-Dependent Genes 274
6 In Vitro Splicing of pre-tRNA 275
7 Conclusion 277
8 Protocol 278
References 279

19 Protein Sorting and Protein Modification Along the Secretory Pathway in BY-2 Cells
KEN MATSUOKA (With 2 Figures)

1 Introduction 283
2 Secretion and Vacuolar Targeting 284
 2.1 Endomembrane Organelles, Their Structure and Function 284
 2.1.1 The Endoplasmic Reticulum 284
 2.1.2 The Golgi Apparatus and the Trans-Golgi Network 285
 2.1.3 Prevacuolar Compartment, Endosome and Autolysosome 286
 2.1.4 Vacuole 287
 2.2 Protein Transport in the Secretory Pathway 288
 2.2.1 Translocation Through the Endoplasmic Reticulum Membrane 288
 2.2.2 Export from the Endoplasmic Reticulum 289
 2.2.3 Golgi-to-Endoplasmic Reticulum and Intra-Golgi Transport 290
2 Results and Discussion .. 318
 2.1 ZmGCN5 and ZmADA2 Are Nuclear Proteins 318
 2.2 The Extended N-Terminal Region of ZmGCN5 Contains
 a Functional Nuclear Localisation Sequence 319
 2.3 The ZmGCN5 Promoter Drives the Expression of GFP
 in Transiently and Stably Transformed Tobacco BY-2 Cells ... 321
 2.4 ZmGCN5 Interacts with ZmADA2 in a Modified Split-Ubiquitin
 System .. 321
 2.5 Establishment of Split-Ubiquitin System to Study the in Vivo
 Interaction in Tobacco BY-2 Protoplasts 323
 2.6 The Split-Ubiquitin System Detects a Strong in Vivo Interaction
 Between ZmGCN5 HAT and the Adaptor ZmADA2 325
 2.7 Split Ubiquitin as a Sensor for In Vivo Protein – Protein
 Interaction Studies in Living Plant Cells 326
3 Concluding Remarks .. 326
4 Protocols ... 327
 4.1 Plasmid Constructs ... 327
 4.1.1 SubCellular Localisation of ZmGCN5 and ZmADA2 327
 4.1.2 Functionality of N-Terminally Located NLS
 in ZmGCN5 .. 327
 4.1.3 Functionality Test of ZmGCN5 Promoter 327
 4.1.4 In Planta Interaction Between ZmGCN5 and ZmADA2 ... 327
 4.2 Plant Material .. 328
 4.3 Preparation and Transfection of Protoplasts 328
 4.4 Tobacco BY-2 Cell Line Transformation 328
 4.5 Fluorescence Microscopy .. 328
References ... 329

22 Tobacco BY-2 Proteomics
KRIS LAUKENS and ERWIN WITTERS

1 Introduction .. 332
2 How Proteomics Can Resolve Biological Questions 333
3 Tobacco BY-2 Proteomics .. 334
 3.1 Why Use Tobacco BY-2 for Proteome Studies? 334
 3.2 Present Situation .. 334
4 Prospects ... 336
5 Protocols .. 336
 5.1 Protein Separation ... 336
 5.1.1 Protocol for Extraction and Separation of the Tobacco
 Proteome BY-2 by Two-Dimensional Electrophoresis
 (pH 3–10, 12% T) ... 337
 5.2 Protein Detection .. 339
 5.3 Protein Identification 339
Tobacco BY-2 Cells
Nagata, T.; Hasezawa, S.; Depicker, A. (Eds.)
2004, XXV, 347 p. 110 illus., 36 illus. in color.,
Hardcover