Contents

1 When I Encountered Tobacco BY-2 Cells!

TOSHIYUKI NAGATA

1 Introduction .. 1
2 Encounter .. 1
3 Synchronization .. 3
4 Distribution ... 4
5 Concluding Remarks .. 5
References ... 5

Section I: Cell Cycle

2 Improvements of the Molecular Toolbox for Cell Cycle Studies in Tobacco BY-2 Cells

JÉRÔME JOUBÈS, DIRK INZÉ, and DANNY GEELEN (With 5 Figures)

1 Introduction .. 7
2 Genome-Wide Expression Analysis of Cell Cycle Modulated Genes in Tobacco BY-2 Cells ... 8
3 A Set of Gateway™ Compatible Binary T-DNA Destination Vectors for Cell Cycle Gene Function Analysis in BY-2 Cells 11
4 Protein Localization in Tobacco BY-2 Cells by Means of GFP-Tagging .. 14
5 Localization of Cell Cycle Proteins 16
6 Conclusion ... 20
References ... 20

3 Transcriptional Regulation During the Plant Cell Cycle: Involvement of Myb Proteins in Cyclin B Transcription

MASAKI ITO (With 2 Figures)

1 Introduction .. 24
2 Mechanisms of G2/M Phase-Specific Transcription in Plants .. 25
2.1 G2/M Phase-Specific Expression of B-Type Cyclin Genes 25
2.2 The *cis* Element Controlling B-Type Cyclin Promoter Activity .. 26
2.3 MSA Elements Provide a Common Mechanism for G2/M Phase Transcription ... 26
2.4 Factors that Bind to the MSA Motif ... 27
2.5 Putative Factors that Bind to cis Elements Involved in Cell Cycle Phase-Independent Activation 28

3 Mechanisms of G2/M Phase-Specific Transcription in Animal Cells .. 29
3.1 Genes for B-Type Cyclins and Co-Expressed Genes ... 29
3.2 CCAAT Box-Mediated Activation ... 29
3.3 Cell Cycle-Dependent Repression .. 30
 3.3.1 The CDE/CHR Tandem Element ... 30
 3.3.2 Mechanisms of Repression Mediated by CDE/CHR 31

4 Conclusion .. 32
5 Perspective ... 33
References ... 34

4 Control of the G1/S Phase Transition in Tobacco BY-2 Cells
MASAMI SEKINE and ATSUKIHI SHINMYO (With 2 Figures)
1 Introduction ... 37
2 Control of the G1/S Transition in Animals ... 38
3 The Rb/E2F Pathway Regulates the G1/S Transition in Plants 39
 3.1 Retinoblastoma-Related Protein .. 39
 3.2 E2F Transcription Factor Family .. 40
 3.3 Cyclin D .. 43
 3.4 CDK Inhibitors ... 44
4 Conclusions ... 46
References ... 48

5 Expression, Localisation and Stability of Mitotic Cyclins in Tobacco BY-2 Cells
YVES PARMENTIER, MARIE CLAIRE CRIQUI, THOMAS POTUSCHAK, and PASCALGENSCHIK (With 4 Figures)
1 Introduction ... 52
2 Tight Control of Mitotic Cyclin Gene Expression 53
3 APC/C-Dependent Ubiquitylation: After 20 Years of Investigation 53
4 Mitotic Cyclin Degradation in BY-2 Cells ... 55
5 Cyclin Subcellular Localisation: a First Step to Identify Functions 57
6 The Spindle Checkpoint and Cyclin Stability .. 60
7 Mitotic Cyclin Destruction: the Essential Step to Exit Mitosis 60
Section II: Cell Biology and Cytoskeleton

6 Molecular Mechanisms of Microtubule Nucleation in Tobacco BY-2 Cells
Anne-Catherine Schmit, Jean Canaday, Virginie Seltzer, Sarah Campagne, Etienne Herzog, Jean-Luc Evrard, and Anne-Marie Lambert (With 6 Figures)

1 Introduction ... 66
2 The Microtubular Cycle in Tobacco BY-2 Cells 67
3 The Molecular Mechanism of Microtubule Nucleation in Metazoans and Fungi: γ-Tubulin Complexes 68
4 Identification of Plant Homologues of γ-TuSC Components in Tobacco BY-2 Cells .. 69
 4.1 Plant γ-Tubulin .. 69
 4.2 Plant γ-Tubulin Level During the Cell Cycle of Tobacco BY-2 Synchronized Cells, and γ-Tubulin RNA Expression in Tobacco Plants .. 71
 4.3 Identification of Arabidopsis Spc97p and Spc98p Homologues in Tobacco BY-2 Cells .. 71
5 γ-Tubulin Complexes in Plant Cell Extracts 72
6 Functional Assays: Inhibition of Microtubule Nucleation on BY-2 Nuclei Using Anti-γ-Tubulin and Anti-Spc98p Antibodies ... 72
7 The Plant Spc98p as a Microtubule Nucleation Marker in Tobacco BY-2 Cells .. 74
8 Expression of the Spc98p-GFP Fusion Protein in Living Tobacco BY-2 Cells .. 74
9 Conclusion and Perspectives: a Model for Plant Microtubule Nucleation .. 75
References ... 78

7 Dynamic Behavior of Microtubules and Vacuoles at M/G1 Interface Observed in Living Tobacco BY-2 Cells
Fumi Kumagai, Arata Yoneda, Natsumaro Kutsuna, and Seiichiro Hasezawa (With 6 Figures)

1 Introduction ... 81
2 Visualization of Microtubules with GFP-α-Tubulin Fusion Protein .. 83
3 Observation of Microtubule Dynamics During M/G1 Transition .. 84

References ... 62
Contents

4 Visualization of Vacuoles with FM4-64 ... 89
5 Vacuolar Reorganization and Microtubule Dynamics During Mitosis ... 89
6 Summary and Prospects ... 92
7 Protocols .. 94
 7.1 Cell Culture and Synchronization .. 94
 7.2 GFP-Tubulin Construct, Transformation and Selection of Transformants ... 94
 7.3 Staining of Vacuolar Membranes ... 95
 7.4 Microscopy ... 95
References .. 95

8 Tobacco BY-2 Cells as an Ideal Material for Biochemical Studies of Plant Cytoskeletal Proteins
 SEIJI SONOBE, ETSUO YOKOTA, and TERUO SHIMMEN (With 4 Figures)

 1 Introduction ... 98
 2 Microtubule and Related Proteins ... 98
 2.1 Tubulin ... 101
 2.2 65-kDa Microtubule-Associated Proteins 101
 2.3 190-kDa Protein .. 103
 2.4 MBP200 .. 103
 3 Actin and Related Proteins ... 105
 3.1 Actin ... 105
 3.2 Myosin ... 106
 3.3 Actin Binding Proteins ... 109
 4 Future Perspectives ... 109
 5 Protocol .. 110
References .. 111

9 Cell Plate Formation: Knowledge from Studies Using Tobacco BY-2 Cells
 TETSUHIRO ASADA and HIROKI YASUHARA (With 3 Figures)

 1 Introduction ... 116
 2 Organization and Redistribution of the Phragmoplast Microtubule Array .. 117
 3 Production, Accumulation, and Fusion of Cell Plate Vesicles ... 122
 4 Chains Between Vesicle Accumulation and Microtubule Redistribution Which Bring About Cell Plate Expansion 123
 4.1 Caffeine-Sensitive Process ... 123
 4.2 Kinesin – MAPKKK Complex-Mediated Process 125
 5 Prediction and Future Verification of a Cycle that Coordinates Cell Plate Formation ... 127
References .. 128
Section III: Physiological and Developmental Aspects

10 Hormonal Control of the Plant Cell Cycle
LUK ROEF and HARRY VAN ONCKELEN (With 1 Figure)

1 Introduction ... 132
2 Cytokinins ... 132
3 Auxins ... 136
4 Abscisic Acid ... 138
5 Jasmonates ... 139
6 Other Hormones ... 140
7 Conclusion ... 140
8 Protocol for the Analysis of Cytokinins, IAA and ABA
 from BY-2 Cells .. 141
 8.1 Cytokinin, IAA and Abscisic Acid Extraction from BY-2
 for Mass Spectrometric Analysis 141
 8.2 Mass Spectrometric Analysis of Cytokinins 143
 8.3 Mass Spectrometric Analysis of IAA and Abscisic Acid 143
References ... 144

11 Block Points in the Cell Cycle Progression of Plant Cells:
 Deduced Lessons from Tobacco BY-2 Cells
TOSHIO SANO, TAKASHI SHIMIZU, KENICHI SAKAMOTO,
and TOSHIYUKI NAGATA (With 3 Figures)

1 Introduction ... 149
2 Auxin as a Sole Growth Factor for the Proliferation
 of Plant Cells .. 150
3 2B-13 Cell Line as an Auxin-Autotrophic Cells 151
4 Cell Cycle Block by Phosphate Starvation 153
5 Conclusion and Perspectives ... 157
6 Protocols ... 157
 6.1 Auxin Starvation of Tobacco BY-2 Cells and Their Re-Entry
 into the Cell Cycle with the Addition of Auxin 157
 6.2 Phosphate Starvation of Tobacco BY-2 Cells and Their Re-Entry
 into the Cell Cycle with Phosphate Addition 158
References ... 158

12 Growth and Physiology of Suspension-Cultured Plant Cells:
 the Contribution of Tobacco BY-2 Cells to the Study of Auxin Action
JEAN-PIERRE RENAUDIN

1 Introduction ... 160
2 The Main Features of Plant Cell Cultures 161
 2.1 General Parameters ... 161
 2.2 Growth of Plant Cell Cultures 162
 2.3 The Extracellular Medium ... 163
3 Auxin Effects on Cultured Plant Cells
 3.1 General Hormone Requirement of Plant Cell Cultures
 3.2 Auxin Requirement of Plant Cell Cultures
 3.2.1 Nature of the Auxin Dose-Response Relationship; Auxin
 Agonists and Antagonists
 3.2.2 Metabolism and Transport of Auxin; Cross Talk with
 Other Hormones
 3.2.3 Lethality of Auxin Absence
 3.2.4 Toxicity of High Auxin Levels
 3.3 The Contribution of Cultured Plant Cells to Study the Effect
 of Auxin on Cell Expansion
 3.3.1 Cell Expansion Occurs at Low Auxin Levels
 in Cell Cultures
 3.3.2 Cell Expansion Is Coupled to the Onset of Differentiation
 in Cell Cultures
 3.3.3 Functional Genetics of Cell Expansion in Cell Cultures
 3.4 The Contribution of Cultured Plant Cells to Study the Effect
 of Auxin on the Cell Cycle
 3.5 The Issue of the Cell Cycle Step(s) Affected by Auxin
 3.5.1 The Control of Ploidy

4 Auxin Signalling and Effect on Gene Expression
 4.1 Receptors and Sensitivity
 4.2 Early Transduction Events
 4.3 The Control of Gene Expression

5 Conclusion

References

13 Dual Pathways for Auxin Regulation of Cell Division
 and Expansion
 ALAN M. JONES, HEMAYET ULLAH, and JIN-GUI CHEN (With 5 Figures)

1 Background
 1.1 Dual Auxin Pathways in Plant Cell Expansion and Division
 1.2 Auxin-Binding Protein 1
 1.3 Heterotrimeric G proteins in Plants

2 Evidence for Auxin Binding Protein 1-Mediated
 Cell Expansion
 2.1 Loss of Function Analysis in Tobacco BY-2 Cells
 2.2 Gain of Function Analysis in Tobacco Leaves

3 Evidence for G Protein Involvement in Cell Division
 3.1 Pharmacological Evidence
 3.2 Genetic Evidence

4 Conclusions

References
14 Studies on Dynamic Changes of Organelles Using Tobacco BY-2 as the Model Plant Cell Line
ATSUSHI SAKAI, YUTAKA MIYAZAWA, and TSUNEYOSHI KUROIWA (With 5 Figures)

1 Introduction ... 192
2 Characteristics of Tobacco BY-2 Cells as Material for Analysis of Plant Organelles 193
3 Tobacco BY-2 Cells as a Model of Undifferentiated Plant Cells .. 193
 3.1 Comparative Analyses of Plastid Gene Expression in Proplastids of Tobacco BY-2 Cells and in Chloroplasts of Leaf Mesophyll Cells ... 193
 3.2 Isolation of Proplastid- and Chloroplast-Nuclei, and Comparison of Their Molecular Architectures 194
 3.3 Comparison of Transcriptional Activities in Proplastid-Nuclei from Tobacco BY-2 Cells and Chloroplast-Nuclei from Mature Leaves ... 195
 3.4 Roles of Distinct RNA Polymerases in Transcriptional Regulation .. 197
 3.5 Role of PEP in Nongreen Plastids ... 198
4 Tobacco BY-2 Cells as a Model of Proliferating Plant Cells .. 199
 4.1 Organelle Dynamics During Proliferation of Tobacco BY-2 Cells ... 199
 4.2 Morphological Changes in Organelles and Organelle Nuclei During Culture 200
 4.3 Changes in Organelle DNA Synthesis During Culture ... 202
 4.4 Organelle DNA Polymerases ... 203
5 Tobacco BY-2 Cells as a Model of Differentiating Plant Cells .. 204
 5.1 Hormone-Induced Amyloplast Formation in Tobacco BY-2 Cells ... 204
 5.2 Amyloplast Formation in Tobacco BY-2 Cells ... 205
 5.3 Effects of Auxin and Cytokinin on Amyloplast Formation and Accompanying Changes 205
 5.4 Requirement for Transcription and Translation in Nucleo-Cytoplasmic and Organelle Compartments 207
 5.5 Other Changes Associated with Amyloplast Formation in Tobacco BY-2 Cells 208
6 Summary ... 209
7 Protocol ... 209
 7.1 Plastid Genes ... 209
 7.2 Preparation and Disruption of Protoplasts ... 211
 7.3 Isolation of Proplastid-Nuclei ... 211
 7.4 Isolation of Mitochondrial-Nuclei ... 212
 7.5 In Vitro Transcription/DNA Synthesis Using Isolated Organelle-Nuclei .. 213
15 Cell Wall Dynamics in Tobacco BY-2 Cells
RYUSUKE YOKOYAMA, DAISUKE TANAKA, TAKESHI FUJINO, TAKAO ITOH, and KAZUHIKO NISHITANI (With 3 Figures)

1 Introduction .. 217

2 Suspension Culture of Tobacco BY-2 Cells as a Model System for Cell Wall Studies .. 218
 2.1 Preparation of Cell Wall Enzymes .. 218
 2.2 Direct Delivery of Molecular Probes to Cell Wall Space 219
 2.3 Tobacco BY-2 Cell Lines with Altered Cell Wall Components by Acclimatization ... 219
 2.4 Cell Wall Regeneration from Protoplasts 221
 2.5 Cell Wall Analyses Using Transformant Cell Lines 222
 2.6 Cell Wall Dynamics During Cell Division 224

3 Concluding Remarks .. 227
References ... 228

16 Regulation of Secondary Metabolism in Tobacco Cell Cultures
SUVI T. HÄKKINEN and KIRSI-MARJA OKSMAN-CALDENTEY (With 5 Figures)

1 Introduction .. 231

2 Alkaloids ... 232
 2.1 Pharmacological Effects of Tobacco Alkaloids 232
 2.2 Nicotine Biosynthesis .. 234
 2.3 Nicotine Degradation and Other Nicotine-Related Alkaloids 236
 2.4 Precursor Feeding .. 238
 2.5 Tobacco BY-2 Cell Culture ... 239

3 Other Secondary Compounds ... 240
 3.1 Putrescine Derivatives and Polyamines 240
 3.2 Phenylpropanoids ... 240
 3.3 Sesquiterpenes ... 242

4 Discovering Secondary Metabolite Pathways – Combining Transcriptomics and Metabolomics .. 243

5 Conclusions ... 244
References ... 245

17 Boron Nutrition of Cultured Tobacco BY-2 Cells
MASARU KOBAYASHI and TORU MATOH (With 7 Figures)

1 Introduction .. 250

2 Intracellular Localization of Boron in Tobacco BY-2 Cells 251

3 Boron-Polysaccharide Complex .. 252
Section IV: Molecular Biological Aspects

18 In Vitro Transcription Systems from BY-2 Cells
YASUSHI YUKAWA and MASAHIRO SUGIURA (With 9 Figures)

1 Introduction ... 265
2 Advantages of the BY-2 Cell as Starting Material for In Vitro
 Transcription Systems ... 266
3 In Vitro Transcription from Pol I-Dependent Genes 266
4 In Vitro Transcription from Pol II-Dependent Genes 267
5 In Vitro Transcription from Pol III-Dependent Genes 269
 5.1 Transcription from Arabidopsis U6 snRNA Genes 269
 5.2 Transcription from Nuclear tRNA Genes 272
 5.3 Transcriptional Regulation by DNA Methylation of Pol
 III-Dependent Genes .. 274
6 In Vitro Splicing of pre-tRNA ... 275
7 Conclusion ... 277
8 Protocol ... 278
References ... 279

19 Protein Sorting and Protein Modification Along
the Secretory Pathway in BY-2 Cells
KEN MATSUOKA (With 2 Figures)

1 Introduction ... 283
2 Secretion and Vacuolar Targeting 284
 2.1 Endomembrane Organelles, Their Structure and Function ... 284
 2.1.1 The Endoplasmic Reticulum 284
 2.1.2 The Golgi Apparatus and the Trans-Golgi Network 285
 2.1.3 Prevacuolar Compartment, Endosome
 and Autolysosome ... 286
 2.1.4 Vacuole .. 287
 2.2 Protein Transport in the Secretory Pathway 288
 2.2.1 Translocation Through the Endoplasmic Reticulum
 Membrane .. 288
 2.2.2 Export from the Endoplasmic Reticulum 289
 2.2.3 Golgi-to-Endoplasmic Reticulum and Intra-Golgi
 Transport .. 290
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.4 Vacuolar Targeting and Secretion</td>
<td>290</td>
</tr>
<tr>
<td>2.2.5 Secretion to the Extracellular Space and Cell Plate Formation</td>
<td>292</td>
</tr>
<tr>
<td>3 Advantages of Using BY-2 Cells for the Characterization of the Endomembrane System in Plant Cells</td>
<td>292</td>
</tr>
<tr>
<td>3.1 An Ideal Tool to Study Protein Transport and Protein Modification with Stably Transformed Cells</td>
<td>292</td>
</tr>
<tr>
<td>3.2 Easy Transient Expression Analysis</td>
<td>293</td>
</tr>
<tr>
<td>3.3 Easy Detection of Fluorescence in Living Cells</td>
<td>294</td>
</tr>
<tr>
<td>3.4 Efficient In Vivo Labeling</td>
<td>295</td>
</tr>
<tr>
<td>3.5 Easy Pharmacological Analysis</td>
<td>295</td>
</tr>
<tr>
<td>4 Concluding Remarks</td>
<td>298</td>
</tr>
<tr>
<td>References</td>
<td>298</td>
</tr>
</tbody>
</table>

20 Characterisation of an Inducible/Repressible Gene Expression System in Tobacco BY-2 Cells
SÉVERINE PLANCHAIS, GACHAO KIUNA, GRAHAM ARMSTRONG, and JAMES A. H. MURRAY (With 5 Figures)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>302</td>
</tr>
<tr>
<td>2 Development of the TGV System</td>
<td>304</td>
</tr>
<tr>
<td>2.1 Precursors to the TGV System</td>
<td>304</td>
</tr>
<tr>
<td>2.2 Detailed Description of the TGV System</td>
<td>306</td>
</tr>
<tr>
<td>3 The TGV System in Tobacco BY-2 Cells</td>
<td>308</td>
</tr>
<tr>
<td>3.1 Tobacco BY-2 Transformation Strategy</td>
<td>308</td>
</tr>
<tr>
<td>3.2 Reporter Genes Mark Successful Dexamethasone-Induced Expression</td>
<td>308</td>
</tr>
<tr>
<td>3.2.1 β-Glucuronidase Reporter Gene</td>
<td>308</td>
</tr>
<tr>
<td>3.2.2 Green Fluorescent Protein Reporter Gene</td>
<td>309</td>
</tr>
<tr>
<td>3.3 The TGV Protein Contributes to Leakiness in Calli, but not in Liquid-Grown Cells</td>
<td>311</td>
</tr>
<tr>
<td>4 Toxicity Studies</td>
<td>312</td>
</tr>
<tr>
<td>5 Discussion</td>
<td>312</td>
</tr>
<tr>
<td>References</td>
<td>313</td>
</tr>
</tbody>
</table>

21 The Tobacco BY-2 Cell Line as a Model System to Understand in Planta Nuclear Coactivator Interactions
RIYAZ A. BHAT and RICHARD D. THOMPSON (With 7 Figures)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>316</td>
</tr>
<tr>
<td>1.1 Rationale for the Use of Tobacco BY-2 Cells for Analysis of Coactivator Function</td>
<td>316</td>
</tr>
<tr>
<td>1.2 GCN5 and ADA: Coactivator Proteins Involved in Histone Acetylation</td>
<td>317</td>
</tr>
</tbody>
</table>
2 Results and Discussion .. 318
 2.1 ZmGCN5 and ZmADA2 Are Nuclear Proteins 318
 2.2 The Extended N-Terminal Region of ZmGCN5 Contains a Functional Nuclear Localisation Sequence 319
 2.3 The ZmGCN5 Promoter Drives the Expression of GFP in Transiently and Stably Transformed Tobacco BY-2 Cells 321
 2.4 ZmGCN5 Interacts with ZmADA2 in a Modified Split-Ubiquitin System .. 322
 2.5 Establishment of Split-Ubiquitin System to Study the in Vivo Interaction in Tobacco BY-2 Protoplasts 323
 2.6 The Split-Ubiquitin System Detects a Strong in Vivo Interaction Between ZmGCN5 HAT and the Adaptor ZmADA2 325
 2.7 Split Ubiquitin as a Sensor for In Vivo Protein – Protein Interaction Studies in Living Plant Cells 326
3 Concluding Remarks .. 326
4 Protocols ... 327
 4.1 Plasmid Constructs .. 327
 4.1.1 SubCellular Localisation of ZmGCN5 and ZmADA2 327
 4.1.2 Functionality of N-Terminally Located NLS in ZmGCN5 .. 327
 4.1.3 Functionality Test of ZmGCN5 Promoter 327
 4.1.4 In Planta Interaction Between ZmGCN5 and ZmADA2 ... 327
 4.2 Plant Material ... 328
 4.3 Preparation and Transfection of Protoplasts 328
 4.4 Tobacco BY-2 Cell Line Transformation 328
 4.5 Fluorescence Microscopy ... 328
References ... 329

22 Tobacco BY-2 Proteomics
Kris Laukens and Erwin Witters
1 Introduction .. 332
2 How Proteomics Can Resolve Biological Questions 333
3 Tobacco BY-2 Proteomics ... 334
 3.1 Why Use Tobacco BY-2 for Proteome Studies? 334
 3.2 Present Situation .. 334
4 Prospects .. 336
5 Protocols ... 336
 5.1 Protein Separation .. 336
 5.1.1 Protocol for Extraction and Separation of the Tobacco Proteome BY-2 by Two-Dimensional Electrophoresis (pH 3–10, 12% T) .. 337
 5.2 Protein Detection .. 339
 5.3 Protein Identification .. 339
5.3.1 Protocol for Tryptic Digestion of BY-2 Proteins
(Adapted from the Protocol of the Protein and Peptide Group, EMBL-Heidelberg) 340
References ... 342

Subject Index ... 344
Tobacco BY-2 Cells
Nagata, T.; Hasezawa, S.; Depicker, A. (Eds.)
2004, XXV, 347 p. 110 illus., 36 illus. in color., Hardcover