Contents

1 Introduction 1
1.1 Historical Backdrop 1
1.1.1 The Pioneers of Free Energy Calculations 1
1.1.2 Escaping from Boltzmann Sampling 2
1.1.3 Early Successes and Failures of Free Energy Calculations .. 3
1.1.4 Characterizing, Understanding, and Improving Free Energy Calculations .. 6
1.2 The Density of States 14
1.2.1 Mathematical Formalism 14
1.2.2 Application: MC Simulation in the Microcanonical Ensemble. 17
1.3 Free Energy .. 18
1.3.1 Basic Approaches to Free Energy Calculations 18
1.4 Ergodicity, Quasi-nonergodicity and Enhanced Sampling 21
References .. 24

2 Calculating Free Energy Differences Using Perturbation Theory
Christophe Chipot and Andrew Pohorille .. 33
2.1 Introduction .. 33
2.2 The Perturbation Formalism 34
2.3 Interpretation of the Free Energy Perturbation Equation 37
2.4 Cumulant Expansion of the Free Energy 40
2.5 Two Simple Applications of Perturbation Theory 42
2.5.1 Charging a Spherical Particle 42
2.5.2 Dipolar Solutes at an Aqueous Interface 44
2.6 How to Deal with Large Perturbations 46
2.7 A Pictorial Representation of Free Energy Perturbation 48
2.8 ‘Alchemical Transformations’ 50
2.8.1 Order Parameters 50
2.8.2 Creation and Annihilation 52
2.8.3 Free Energies of Binding 55
Contents

2.8.4 The Single-Topology Paradigm .. 56
2.8.5 The Dual-Topology Paradigm 58
2.8.6 Algorithm of an FEP Point-Mutation Calculation 60
2.9 Improving the Efficiency of FEP 60
 2.9.1 Combining Forward and Backward Transformations 61
 2.9.2 Hamiltonian Hopping ... 62
 2.9.3 Modeling Probability Distributions 64
2.10 Calculating Free Energy Contributions 66
 2.10.1 Estimating Energies and Entropies 67
 2.10.2 How Relevant are Free Energy Contributions? 69
2.11 Summary .. 71
References ... 72

3 Methods Based on Probability Distributions and Histograms
M. Scott Shell, Athanassios Panagiotopoulos, and Andrew Pohorille 77

3.1 Introduction .. 77
3.2 Histogram Reweighting ... 78
 3.2.1 Free Energies from Histograms 78
 3.2.2 Ferrenberg–Swendsen Reweighting and WHAM 81
3.3 Basic Stratification and Importance Sampling 84
 3.3.1 Stratification ... 84
 3.3.2 Importance Sampling ... 87
 3.3.3 Importance Sampling and Stratification with WHAM 90
3.4 Flat-Histogram Methods ... 92
 3.4.1 Theoretical Basis ... 93
 3.4.2 The Multicanonical Method 99
 3.4.3 Wang–Landau Sampling 101
 3.4.4 Transition-Matrix Estimators 106
 3.4.5 Implementation Issues 112
3.5 Order Parameters, Reaction Coordinates, and Extended Ensembles 113
References ... 116

4 Thermodynamic Integration Using Constrained and Unconstrained Dynamics
Eric Darve ... 119

4.1 Introduction .. 119
4.2 Methods for Constrained and Unconstrained Simulations 121
4.3 Generalized Coordinates and Lagrangian Formulation 123
 4.3.1 Generalized Coordinates 123
4.4 The Derivative of the Free Energy 128
 4.4.1 Discussion of (4.15) .. 130
4.5 The Potential of Mean Constraint Force 131
 4.5.1 Constrained Simulation .. 132
 4.5.2 The Fixman Potential .. 133
 4.5.3 The Potential of Mean Constraint Force 134
5.9 Calculating Potentials of Mean Force .. 191
 5.9.1 Approximate Relations for Potentials of Mean Force 192
5.10 Applications ... 194
5.11 Summary .. 194
References ... 195

6 Understanding and Improving Free Energy Calculations in Molecular Simulations: Error Analysis and Reduction Methods
Nandou Lu and Thomas B. Woolf ... 199
6.1 Introduction .. 199
 6.1.1 Sources of Free Energy Error .. 200
 6.1.2 Accuracy and Precision: Bias and Variance Decomposition 201
 6.1.3 Dominant Errors ... 201
 6.1.4 Outline .. 202
6.2 Overview of the FEP and NEW Methods 203
 6.2.1 Free Energy Perturbation .. 203
 6.2.2 Nonequilibrium Work Free Energy Methods 205
6.3 Understanding Free Energy Calculations 205
 6.3.1 Important Phase Space .. 206
 6.3.2 Probability Distribution Functions of Perturbations 212
6.4 Modeling Free Energy Errors ... 215
 6.4.1 Accuracy of Free Energy: A Model 215
 6.4.2 Variance in Free Energy Difference 222
6.5 Optimal Staging Design ... 226
6.6 Overlap Sampling Techniques ... 228
 6.6.1 Overlap Sampling in FEP .. 228
 6.6.2 Overlap and Funnel Sampling in NEW Calculations 232
 6.6.3 Umbrella Sampling and Weighted Histogram Analysis 237
6.7 Extrapolation Methods .. 239
 6.7.1 Block Averaging Analysis ... 239
 6.7.2 Linear Extrapolation .. 241
 6.7.3 Cumulative Integral Extrapolation 242
6.8 Concluding Remarks ... 243
References ... 244

7 Transition Path Sampling and the Calculation of Free Energies
Christoph Dellago .. 249
7.1 Rare Events and Free Energy Landscapes .. 249
7.2 Transition Path Ensemble ... 252
7.3 Sampling the Transition Path Ensemble ... 255
 7.3.1 Monte Carlo Sampling in Path Space 255
 7.3.2 Shooting and Shifting .. 256
 7.3.3 Efficiency ... 260
 7.3.4 Initial Pathway and Definition of the Stable States 261
7.4 Free Energies from Transition Path Sampling Simulations 262
Contents

7.5 The Jarzynski Identity: Path Sampling of Nonequilibrium Trajectories 264
7.6 Rare Event Kinetics and Free Energies in Path Space ... 270
7.7 Summary ... 274
References .. 274

8 Specialized Methods for Improving Ergodic Sampling Using Molecular Dynamics and Monte Carlo Simulations

Ioan Andricioaei .. 277
8.1 Background .. 277
8.2 Measuring Ergodicity ... 278
8.3 Introduction to Enhanced Sampling Strategies .. 279
8.4 Modifying the Configurational Distribution:

Non-Boltzmann Sampling .. 280
8.4.1 Flattening the Energy Distribution: Multicanonical Sampling and Related Methods ... 281
8.4.2 Generalized Statistical Sampling ... 283
8.5 Methods Based on Exchanging Configurations:

Parallel Tempering and Related Strategies ... 286
8.5.1 Theory .. 287
8.5.2 Extensions .. 289
8.5.3 Selected Applications .. 289
8.5.4 Practical Issues ... 290
8.5.5 Related Methods .. 290
8.6 Smart Darting and Basin Hopping Monte Carlo .. 291
8.7 Momentum-Enhanced HMC ... 293
8.8 Skewing Momenta Distributions to Enhance Free Energy Calculations from Trajectory Space Methods ... 298
8.8.1 Introduction .. 299
8.8.2 Puddle Jumping and Related Methods .. 301
8.8.3 The Skewed Momenta Method .. 303
8.8.4 Application to the Jarzynski Identity ... 306
8.8.5 Discussion .. 308
8.9 Quantum Free Energy Calculations .. 309
8.10 Summary .. 314
References .. 315

9 Potential Distribution Methods and Free Energy Models of Molecular Solutions

Lawrence R. Pratt and Dilip Asthagiri ... 323
9.1 Introduction ... 323
9.1.1 Example: Zn$^{2+}$ (aq) and Metal Binding of Zn Fingers .. 324
9.2 Background Notation and Discussion of the Potential Distribution Theorem .. 326
9.2.1 Some Thermodynamic Notation .. 326
9.2.2 Some Statistical Notation .. 327
9.3 Quasichemical Theory

- **9.3.1 Cluster-Variation Exercise Sketched**

- **9.3.2 Results of Clustering Analyses**

- **9.3.3 Primitive Quasichemical Approximation** $K_m \approx K_m^{(0)}[\varphi]$

- **9.3.4 Molecular-Field Approximation** $K_m \approx K_m^{(0)}[\varphi]$

9.4 Example

- **9.4.1**

- **9.4.2 Physical Discussion and Speculation on Hydrophobic Effects**

9.5 Conclusions

References

10 Methods for Examining Phase Equilibria

M. Scott Shell and Athanassios Z. Panagiotopoulos

- **10.1 Introduction**

- **10.2 Calculating the Chemical Potential**
 - **10.2.1 Widom Test Particle Method**
 - **10.2.2 NPT + Test Particle Method**

- **10.3 Ensemble-Based Free Energies and Equilibria**
 - **10.3.1 Gibbs Ensemble**
 - **10.3.2 Gibbs–Duhem Integration**
 - **10.3.3 Phase Equilibria in the Grand Canonical Ensemble**
 - **10.3.4 Advanced Approaches**

- **10.4 Selected Applications of Flat Histogram Methods**
 - **10.4.1 Liquid–Vapor Equilibria using the Wang–Landau Algorithm**
 - **10.4.2 Prewetting Transitions in Confined Fluids using Transition Matrix Methods**
 - **10.4.3 Isomerization Transition in (NaF)_4 using the Wang–Landau Algorithm**
 - **10.4.4 Other Applications**

- **10.5 Summary: Comparison of Methods**

References

11 Quantum Contributions to Free Energy Changes in Fluids

Thomas L. Beck

- **11.1 Introduction**

- **11.2 Historical Backdrop**

- **11.3 The Potential Distribution Theorem**

- **11.4 Fourier Path Integrals**

- **11.5 The Quantum Potential Distribution Theorem**

- **11.6 The Variational Approach to Approximations**

- **11.7 The Feynman–Hibbs Variational Method**

- **11.8 A Worked Example**

- **11.9 Wigner–Kirkwood Approximations**
11.10 The PDT and Thermodynamic Integration for Exact Quantum Free Energy Changes .. 407
11.11 Assessment and Applications 409
 11.11.1 Foundational Examples 410
 11.11.2 Force Field Models of Water 411
 11.11.3 Ab Initio Water .. 413
 11.11.4 Enzyme Kinetics and Proton Transport 415
11.12 Summary ... 417
References .. 419

12 Free Energy Calculations: Approximate Methods for Biological Macromolecules
Thomas Simonson .. 423

12.1 Introduction .. 423
12.2 Thermodynamic Perturbation Theory and Ligand Binding 425
 12.2.1 Obtaining Thermodynamic Perturbation Formulas 425
 12.2.2 Ligand Binding: General Framework 426
 12.2.3 Applications of Thermodynamic Perturbation Formulas 427
12.3 Linear Response Theory and Free Energy Calculations 430
 12.3.1 Linear Response Theory: The General Framework 430
 12.3.2 Linear Response Theory: Application to Proton Binding and pK_a Shifts ... 434
12.4 Potential of Mean Force and Simplified Solvent Treatments 436
 12.4.1 The Concept of Potential of Mean Force (PMF) 436
 12.4.2 The Nonpolar Contribution to the Potential of Mean Force . 438
 12.4.3 Classical Continuum Electrostatics 441
12.5 Linear Interaction Energy Approaches 443
12.6 Free Energy Methods Using an Implicit Solvent: PBFE, MM/PBSA, and Other Acronyms 446
 12.6.1 Thermodynamic Pathways and Electrostatic Free Energy Components: The PBFE Method 447
 12.6.2 Other Free Energy Components: MM/PBSA Methods 449
 12.6.3 Some Applications of PBFE and MM/PBSA 450
 12.6.4 The Choice of Dielectric Constant: Proton Binding as a Paradigm .. 452
12.7 Conclusions .. 454
References .. 455

13 Applications of Free Energy Calculations to Chemistry and Biology
Christophe Chipot, Alan E. Mark, Vijay S. Pande, and Thomas Simonson 463

13.1 Introduction .. 463
13.2 Protein–Ligand Association 464
 13.2.1 Relative Protein–Ligand Binding Constants 464
 13.2.2 Absolute Protein–Ligand Binding Constants 466
XVI Contents

13.2.3 Molecular Dynamics Free Energy Yields Structures and Free
Energy Components .. 469
13.2.4 Electrostatic Treatments 470
13.3 Recognition and Association: Following the Binding Reaction 472
13.4 Free Energies of Solvation 474
13.5 Transport Phenomena .. 476
 13.5.1 Partitioning Between Solvents 476
 13.5.2 Assisted Transport in the Cell Machinery 478
13.6 Protein Folding and Stability 480
13.7 Redox and Acid–Base Reactions 481
 13.7.1 The Importance of Electrostatics 481
 13.7.2 Redox Reactions and Electron Transfer 482
 13.7.3 Acid–Base Reactions and Proton Transfer 484
13.8 High-Performance Computing 485
 13.8.1 Enhancing Sampling: A Natural Role for High-Performance
 Computing ... 487
 13.8.2 Conformational Free Energy 488
13.9 Conclusions and Future Perspectives for Free Energy Calculations . 491
References ... 492

14 Summary and Outlook

Andrew Pohorille and Christophe Chipot 503
14.1 Summary: A Unified View 503
14.2 Outlook: What is the Future Role of Free Energy Calculations? ... 507
References ... 511

Index .. 515
Free Energy Calculations
Theory and Applications in Chemistry and Biology
Chipot, C.; Pohorille, A. (Eds.)
2007, XVIII, 518 p., Hardcover
ISBN: 978-3-540-38447-2