1 Biological Invasions: why it Matters 1
 WOLFGANG NENTWIG

Section I Pathways of Biological Invasions

Short Introduction .. 9
 WOLFGANG NENTWIG

2 Pathways in Animal Invasions 11
 WOLFGANG NENTWIG

 2.1 Natural Dispersal Versus more Recent Invasions 11
 2.2 Unintentional Introductions 12
 2.2.1 Transports ... 12
 2.2.1.1 Tramps in Vehicles and Planes 12
 2.2.1.2 Waterways and Shipping 15
 2.2.1.3 Transported Plant Material 16
 2.2.2 Escapes ... 17
 2.3 Intentional Introductions 18
 2.3.1 Human Nutrition ... 18
 2.3.1.1 Global Distribution of Domesticated Animals 18
 2.3.1.2 Release of Mammals and Birds for Hunting 19
 2.3.1.3 Release of Fish and Other Species 20
 2.3.2 Beneficials or Biological Control Agents 22
 2.3.2.1 Vertebrates ... 22
 2.3.2.2 Invertebrates ... 23
 2.3.3 Ornamental Animals and Pets 23
 2.4 Conclusions ... 25

References .. 26
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Waterways as Invasion Highways – Impact of Climate Change and Globalization</td>
<td>Bella S. Galil, Stefan Nehring and Vadim Panov</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>59</td>
</tr>
<tr>
<td>5.2</td>
<td>The Watery Web – Inland Waterways of Europe</td>
<td>60</td>
</tr>
<tr>
<td>5.3</td>
<td>Aquatic Highways for Invasion</td>
<td>61</td>
</tr>
<tr>
<td>5.4</td>
<td>Hot and Hotter – the Role of Temperature in European Waterways Invasions</td>
<td>64</td>
</tr>
<tr>
<td>5.5</td>
<td>Future of Waterways Transport</td>
<td>66</td>
</tr>
<tr>
<td>5.6</td>
<td>Suez and Panama – the Interoceanic Canals</td>
<td>67</td>
</tr>
<tr>
<td>5.7</td>
<td>Globalization and Shipping – “Size Matters”</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>71</td>
</tr>
</tbody>
</table>

Section II Traits of a Good Invader

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Integrating Ecological and Evolutionary Theory of Biological Invasions</td>
<td>Ruth A. Hufbauer and Mark E. Torchin</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>79</td>
</tr>
<tr>
<td>6.2</td>
<td>Hypotheses to Explain Biological Invasion</td>
<td>82</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Ecological Hypotheses</td>
<td>83</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Evolutionary Hypotheses</td>
<td>85</td>
</tr>
<tr>
<td>6.3</td>
<td>Proposed Refinements to Hypotheses, Predictions and Tests</td>
<td>87</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Refining the Enemy Release Hypothesis</td>
<td>87</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Refining the Evolution of Increased Competitive Ability Hypothesis</td>
<td>88</td>
</tr>
<tr>
<td>6.4</td>
<td>Recent Syntheses and Synergies Between Hypotheses</td>
<td>88</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusions</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>93</td>
</tr>
</tbody>
</table>
7 Traits Associated with Invasiveness in Alien Plants: Where Do we Stand? 97
PETR PYŠEK and DAVID M. RICHARDSON

7.1 History of the Search for Traits and Shifts in Research Focus 97
7.2 Comparative Analyses of Multispecies Datasets:
 Every Picture Tells a Story 99
7.2.1 Methodological Approaches: what is Being Compared? ... 99
7.2.2 Data, Scale and Analysis 106
7.2.3 Main Findings of Comparative
7.2.4 Biases to Bear in Mind: Residence Time, Scale and Stage 111
7.2.5 Message from Comparative Multispecies Studies 112
7.3 Studies of Congeners and Confamilials 113
7.3.1 Assumptions for Congeneric Studies 114
7.3.2 Searching for Generalities Within Genera 114
7.4 Combining Approaches: Pooling the Evidence 119
7.5 Conclusions: Where Do we Stand? 120
References ... 122

8 Do Successful Invaders Exist? Pre-Adaptations to Novel Environments in Terrestrial Vertebrates 127
DANIEL SOL

8.1 Introduction .. 127
8.2 Framework .. 127
8.3 Do Successful Invaders Exist? 129
8.4 What Makes a Species a Successful Invader? 132
8.5 Conclusions and Future Directions 137
References ... 139
Section III Patterns of Invasion and Invasibility

Short Introduction .. 145
WOLFGANG NENTWIG

9 Effects of Land Management Practices on Plant Invasions in Wildland Areas .. 147
MATTHEW L. BROOKS

9.1 Introduction ... 147
9.2 Factors that Affect Plant Invasions 148
9.3 Linking Land Management Practices with Invasion Potential 151
9.3.1 Vehicular Route Management 151
9.3.1.1 Vehicles ... 153
9.3.1.2 Vehicular Routes .. 153
9.4 Managing Established Populations of Invasive Plants 155
9.4.1 Effects of Vegetation Management on Resource Availability 155
9.4.2 Effects of Vegetation Management on Propagule Pressure of Invaders .. 158
9.4.3 Predicting the Effects of Vegetation Management Treatments .. 158
9.5 Conclusions ... 159
References ... 160

10 Nitrogen Enrichment and Plant Invasions: the Importance of Nitrogen-Fixing Plants and Anthropogenic Eutrophication 163
MICHAEL SCHERER-LORENZEN, HARRY OLDE VENTERINK, and HOLGER BUSCHMANN

10.1 Introduction ... 163
10.2 Alterations of the N-Cycle by Exotic Invaders 164
10.2.1 Nitrogen-Fixing Species Among Invasives and Natives 164
10.2.2 Nitrogen Input by N₂-Fixing Invasive Species 165
10.2.3 Major Invasive Nitrogen-Fixing Species 166
10.2.4 Facilitated Secondary Invasion 168
10.2.5 Nitrogen Fixation Suppressed by Invasion 169
10.3 Nitrogen Deposition and Exotic Invasions 169
10.3.1 N Deposition and Eutrophication in Natural Ecosystems 169
10.3.2 A Short Note on Mechanisms 170
10.3.3 Evidence for Effects of N Deposition on Plant Invasions? 171
10.3.3.1 Spatial Correlations .. 171
10.3.3.2 Observational Studies .. 173
10.3.3.3 Nutrient Addition Experiments 174
10.3.4 Interaction of N Deposition with Other Drivers of Environmental Change .. 175
10.4 Future Challenges .. 176
References .. 177

11 From Ecosystem Invasibility to Local, Regional and Global Patterns of Invasive Species 181
Ingo Kühn and Stefan Klotz

11.1 Introduction ... 181
11.2 Background ... 182
11.3 Case Studies on Ecosystem Invasibility 184
11.4 Scale Dependence of Invasibility and the Importance of Environmental Factors .. 185
11.5 Local, Regional and Global Patterns 190
11.6 Scale-Dependent Consequences for Biodiversity of Invaded Ecosystems .. 192
11.7 Conclusions ... 193
References .. 194

12 Will Climate Change Promote Alien Plant Invasions? ... 197
Wilfried Thuiller, David M. Richardson, and Guy F. Midgley

12.1 Introduction ... 197
12.2 Current and Emerging Knowledge 200
12.2.1 Elevated Carbon Dioxide ... 201
12.2.1.1 Observations and Experimental Findings 201
12.2.1.2 Future Expectations ... 202
12.2.2 Changing Climate with Respect to Temperature and Rainfall ... 203
12.2.3 Future Expectations ... 204
12.2.4 Other Factors ... 206
12.2.5 Increased Fire Frequency ... 206
12.3 Perspectives .. 207
References .. 208
Section IV Ecological Impact of Biological Invasions

Short Introduction .. 215
WOLFGANG NENTWIG

13 Impacts of Invasive Species on Ecosystem Services 217
HEATHER CHARLES and JEFFREY S. DUKES

13.1 Introduction ... 217
13.2 Relating Costs of Invasives to Valuation of Ecosystem Services 218
13.2.1 Valuing Ecosystem Services 218
13.2.2 Interpreting Invasive Impacts 218
13.3 Mechanisms of Alteration 220
13.3.1 Species Extinctions and Community Structure 223
13.3.2 Energy, Nutrient, and Water Cycling 224
13.3.3 Disturbance Regime, Climate, and Physical Habitat 225
13.4 Which Ecosystems Are at Risk and Which Invasives Have the Greatest Impact? 226
13.5 Case Studies and Examples 229
13.5.1 Provisioning Ecosystem Services 229
13.5.2 Regulating Ecosystem Services 230
13.5.3 Cultural Ecosystem Services 231
13.5.4 Supporting Ecosystem Services 232
13.6 Conclusions ... 233
References .. 235

14 Biological Invasions by Marine Jellyfish 239
WILLIAM M. GRAHAM and KEITH M. BAYHA

14.1 Introduction ... 239
14.2 Ctenophores .. 240
14.2.1 Mnemiopsis leidyi ... 240
14.2.2 Beroë ovata ... 241
14.3 Medusae (Cnidaria) ... 242
14.3.1 Phyllorhiza punctata (Scyphozoa) 242
14.3.2 Cassiopea andromeda (Scyphozoa) 243
14.3.3 Rhopilema nomadica (Scyphozoa) 244
14.3.4 Aurelia spp. (Scyphozoa) 244
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3.5</td>
<td>Maeotias marginata, Blackfordia virginica, and Moerisia lyonsii (Hydrozoa)</td>
<td>245</td>
</tr>
<tr>
<td>14.4</td>
<td>Jellyfish Invasions: Blooms and Ecosystem Controls</td>
<td>245</td>
</tr>
<tr>
<td>14.5</td>
<td>The Role of Life-Histories</td>
<td>247</td>
</tr>
<tr>
<td>14.6</td>
<td>Taxonomic Confusion, Species Crypsis, and Morphological Plasticity</td>
<td>248</td>
</tr>
<tr>
<td>14.7</td>
<td>Transport of Invasive Marine Jellyfish</td>
<td>249</td>
</tr>
<tr>
<td>14.8</td>
<td>Conclusions</td>
<td>250</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>250</td>
</tr>
</tbody>
</table>

15	Effects of Invasive Non-Native Species on the Native Biodiversity in the River Rhine	257
	BRUNO BAUR and STEPHANIE SCHMIDLIN	
15.1	Introduction	257
15.2	The River Rhine	258
15.3	Native Biodiversity and Invasion History	260
15.4	Species Interactions and Mechanisms of Replacement	264
15.4.1	Amphipods	264
15.4.2	Molluscs	266
15.5	Why Are There so many Non-Native Species in the Rhine?	268
15.6	Conclusions	269
References		270

16	Hybridization and Introgression Between Native and Alien Species	275
	CARLO R. LARGIADÈR	
16.1	Introduction	275
16.2	Definitions and Technical Aspects	277
16.2.1	Definition of Hybridization and Introgression	277
16.2.2	Genetic and Statistical Tools	278
16.3	Basic Types of Anthropogenic Hybridization:	
	Empirical Examples	279
16.3.1	Hybridization Without Introgression	279
16.3.2	Hybridization with Introgression	281
16.4	Hybridization as a Stimulus for the Evolution of Invasiveness and the Emergence of Anthropogenic Hybrid Taxa	285
16.5	Can we Predict Introggressive Hybridization and its Outcome?	286
17 Genetically Modified Organisms as Invasive Species? 293
ROSIE HAILS and TRACEY TIMMS-WILSON

17.1 Introduction 293
17.2 Quantitative Measures of Invasion Risk 293
17.3 Gene Flow: the First Step to Invasiveness of Transgenes 295
17.3.1 Gene Escape in Bacterial Communities 295
17.3.1.1 Transformation 296
17.3.1.2 Conjugation 296
17.3.1.3 Transduction 296
17.3.1.4 Evidence for Gene Transfer from GMMs 297
17.3.2 Gene Escape in Plant Communities 297
17.3.3 Gene Escape in Animal Populations 298
17.4 Transgene Spread 299
17.4.1 Transgene Spread in Bacterial Populations 299
17.4.2 Transgene Spread in Plant Populations 300
17.4.3 Transgene Spread in Animal Populations 302
17.5 Ecological Impact 304
17.5.1 Detecting Impacts in Bacterial Populations 304
17.5.2 Potential Impacts in Plant Populations 305
17.5.3 Potential Impacts in Animal Populations 305
17.6 Conclusions 306
References 307
Section VI Prevention and Management of Biological Invasions

Short Introduction .. 351

WOLFGANG NENTWIG

20 Economic Analysis of Invasive Species Policies 353

JULIA TOUZA, KATHARINA DEHNEN-SCHMUTZ, and GLYN JONES

20.1 Introduction ... 353
20.2 Economic Instruments as Measures for Preventing Invasions ... 356
20.2.1 Risk-Related Taxes 356
20.2.2 Risk-Related Import Tariffs 357
20.2.3 Tradable Permits .. 358
20.3 Trade-offs Between Prevention and Control Strategies ... 359
20.4 Uncertainty Surrounding Invasion Risk 361
20.5 Discussion .. 362
References .. 364

21 Phytosanitary Measures to Prevent the Introduction of Invasive Species 367

GUY J. HALLMAN

21.1 Introduction ... 367
21.2 International Regulatory Organizations 369
21.3 Phytosanitary Measures 370
21.3.1 Phytosanitary Measures that Do not Involve Commodity Treatment 370
21.3.1.1 Non-Host Status .. 371
21.3.1.2 Systems Approach ... 372
21.3.2 Phytosanitary Treatments 374
21.3.2.1 Cold Treatment ... 375
22 Limits and Potentialities of Eradication as a Tool for Addressing Biological Invasions

Piero Genovesi

22.1 Introduction

22.1.1 Definition	385
22.1.2 History and Recent Developments	386
22.1.3 Outcomes	388

22.2 Key Elements of Eradication

22.2.1 Biological Aspects	389
22.2.2 Lag Phase	390
22.2.3 Removal Methods	391
22.2.4 Costs	393
22.2.5 Legal and Organizational Constraints	394
22.2.6 Human Dimensions	396

22.3 Management Implications

22.3.1 How to Plan an Eradication	397
22.3.2 Rapid Response to New Invasions	397
22.3.3 Planning the Eradication of Established Populations	398
22.3.4 Legal-Organizational Aspects	398
22.3.5 Removal Methods	399
22.3.6 Eradication vs. Control	399
22.3.7 Monitoring	399

References

399
Pros and Cons of Biological Control

Dirk Babendreier

Introduction
Pros of Biological Control
Cons of Biological Control
Weed Biological Control
Arthropod Biological Control
Harmonia axyridis, a Case Study
Why Has H. axyridis Become Invasive?
How to Avoid ‘Harmonia Cases’?
Conclusions

General Conclusion, or what Has to be Done now?

Wolfgang Nentwig

Need for more Research
Management from Detection to Eradication or Control
Technical Solutions
Legislation and Administration
Socio-Economy and Education

Subject Index
Biological Invasions
Nentwig, W. (Ed.)
2007, XXV, 446 p., Hardcover
ISBN: 978-3-540-36919-6