Contents

1 Introduction ... 1
 1.1 Logistic Key Performance Indicators for Manufacturers 1
 1.2 Dilemma of Operations Planning .. 4
 1.3 Model Based Problem Solving Process .. 6
 1.4 Objectives of Production Logistics ... 9
 1.5 Logistic Operating Curves – an Explanatory Model for Production Logistics ... 11
 1.6 Goals and Structure of the Book ... 13

2 Basic Principles of Modeling Logistic Operating Curves .. 17
 2.1 Funnel Model as a Universal Model for Describing Production Processes ... 17
 2.1.1 Work Content and Operation Times .. 17
 2.1.2 Throughput Time .. 21
 2.1.3 Lateness .. 23
 2.2 Logistic Objectives in a Throughput Diagram .. 24
 2.2.1 Output Rate and Utilization ... 25
 2.2.2 Work in Process (WIP) .. 27
 2.2.3 Weighted Throughput Time and Range .. 28
 2.3 Little’s Law ... 31
 2.4 Logistic Operating Curves for Production Processes 35

3 Traditional Models of Production Logistics ... 39
 3.1 Queuing Models .. 40
 3.1.1 M/G/1 Model ... 42
 3.1.2 Using Queuing Theory to Determine Logistic Operating Curves ... 45
 3.1.3 A Critical Review of the Queuing Theory Approach 46
3.2 Simulation... 48
 3.2.1 PROSIM III Simulation System.. 49
 3.2.2 Simulation as an Aid in Determining Logistic Operating Curves......................... 50
 3.2.3 A Critical Review of Simulation .. 52

4 Deriving the Logistic Operating Curves Theory 59
 4.1 Ideal Logistic Operating Curves .. 60
 4.1.1 Ideal Minimum WIP Level.. 60
 4.1.2 Maximum Possible Output Rate..................................... 63
 4.1.3 Constructing Ideal Logistic Operating Curves for the Output Rate and Time Parameters 64
 4.2 Deriving an Approximation Equation for Calculating an Output Rate Operating Curve................................. 66
 4.2.1 C norm Function as the Basic Function for a Calculated Output Rate Operating Curve............. 68
 4.2.2 Transforming the C norm Function.................................... 70
 4.2.3 Parametrizing the Logistic Operating Curves Equation .. 72
 4.3 Calculating Output Rate Operating Curves................................ 77
 4.4 Calculating Operating Curves for the Time Parameters 80
 4.5 Normalized Logistic Operating Curves..................................... 85
 4.6 Logistic Operating Curves Theory and Little’s Law – a Model Synthesis 88
 4.7 Verifying the Logistic Operating Curves Theory 91
 4.7.1 Simulation Based Model Validation.................................. 91
 4.7.2 Validating the Model Based on Field Analyses..................... 96
 4.7.2.1 Underload Operating Zone..................................... 97
 4.7.2.2 Transitional Operating Zone................................. 99
 4.7.2.3 Overload Operating Zone 100
 4.8 Extending the Logistic Operating Curves Theory....................... 101
 4.8.1 Hierarchically Aggregating Logistic Operating Curves................................. 101
 4.8.2 Manufacturing System Operating Curves............................ 104
 4.8.3 Workstations with Common WIP Buffers........................... 110
 4.8.4 Considering Overlapping Production............................... 111
 4.9 Prerequisites for Applying Calculated Logistic Operating Curves... 113
 4.10 Schedule Reliability Operating Curves.................................... 115
 4.10.1 Mean Relative Lateness Operating Curve........................ 115
 4.10.2 Deriving an Operating Curve for Describing the Schedule Reliability................................. 118
 4.11 Summarizing the Derivation of the Logistic Operating Curves Theory................................. 123
5 Basic Laws of Production Logistics ... 127
 5.1 First Basic Law of Production Logistics 127
 5.2 Second Basic Law of Production Logistics 128
 5.3 Third Basic Law of Production Logistics 129
 5.4 Fourth Basic Law of Production Logistics 130
 5.5 Fifth Basic Law of Production Logistics 131
 5.6 Sixth Basic Law of Production Logistics 132
 5.7 Seventh Basic Law of Production Logistics 133
 5.8 Eighth Basic Law of Production Logistics 134
 5.9 Ninth Basic Law of Production Logistics 135

6 Applications of the Logistic Operating Curves Theory 137
 6.1 Developing and Analyzing Calculated Logistic
 Operating Curves ... 137
 6.1.1 Calculating the Logistic Operating Curves 138
 6.1.2 Applying Logistic Operating Curves for Analyzing
 a Simulated Manufacturing Process 140
 6.2 Evaluating Alternative Methods for Developing Potential
 for Logistic Improvement .. 143
 6.2.1 Varying the Work Content Structure 145
 6.2.2 Varying the Capacity Structure 147
 6.3 Calculating Logistic Operating Curves with Missing
 or Incorrect Operating Data ... 148
 6.3.1 Incorrect Work Content and Transport Time Data 148
 6.3.1.1 Case 1: WC\textsubscript{m} incorrect; WC\textsubscript{v} correct;
 TTR\textsubscript{m} correct 149
 6.3.1.2 Case 2: WC\textsubscript{m} correct; WC\textsubscript{v} incorrect;
 TTR\textsubscript{m} correct 150
 6.3.1.3 Case 3: WC\textsubscript{m} correct; WC\textsubscript{v} correct;
 TTR\textsubscript{m} incorrect 151
 6.3.2 Missing or Incorrect Data
 for the Maximal Possible Output Rate 152
 6.3.3 An Incorrect Stretch Factor α_1 155
 6.4 Impact of an Unsteady Process State on Developing
 and Interpreting Logistic Operating Curves 157
 6.4.1 Time Related Changes to the Work Content Structure.. 157
 6.4.2 Time Related Changes in the WIP Level 159
 6.5 Possibilities for Employing Logistic Operating Curves
 in Designing and Controlling Production Processes 163
 6.5.1 Logistic Positioning ... 165
 6.5.2 Implementing Logistic Operating Curves
 in Production Control .. 169
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.3 Logistic Oriented Design and Parameterization</td>
<td></td>
</tr>
<tr>
<td>of Planning and Control Strategies</td>
<td>171</td>
</tr>
<tr>
<td>6.5.3.1 Throughput Oriented Lot Sizing</td>
<td>172</td>
</tr>
<tr>
<td>6.5.3.2 Flow Rate Oriented Scheduling</td>
<td>173</td>
</tr>
<tr>
<td>6.5.3.3 Integrating the Logistic Operating Curves</td>
<td></td>
</tr>
<tr>
<td>Theory in Load Oriented Order Release</td>
<td>175</td>
</tr>
<tr>
<td>6.5.4 Logistic Oriented Production Design</td>
<td>177</td>
</tr>
<tr>
<td>6.5.4.1 Employing the Logistic Operating Curves</td>
<td></td>
</tr>
<tr>
<td>in Factory Planning</td>
<td>177</td>
</tr>
<tr>
<td>6.5.4.2 Logistic Oriented Evaluation</td>
<td></td>
</tr>
<tr>
<td>of Supply Chains</td>
<td>178</td>
</tr>
<tr>
<td>7 Practical Applications of Bottleneck Oriented Logistic Analyses</td>
<td>181</td>
</tr>
<tr>
<td>7.1 Conducting a Bottleneck Oriented Logistic Analysis</td>
<td>181</td>
</tr>
<tr>
<td>7.1.1 Determining Key Figures</td>
<td></td>
</tr>
<tr>
<td>7.1.1.1 Key Work Content Figures</td>
<td>182</td>
</tr>
<tr>
<td>7.1.1.2 Key Throughput Figures</td>
<td>183</td>
</tr>
<tr>
<td>7.1.1.3 Key Output Rate Figures</td>
<td>183</td>
</tr>
<tr>
<td>7.1.1.4 Key Work in Process Figures</td>
<td>183</td>
</tr>
<tr>
<td>7.1.1.5 Key Lateness Figures</td>
<td>183</td>
</tr>
<tr>
<td>7.1.2 Determining Logistically Relevant Workstations</td>
<td>184</td>
</tr>
<tr>
<td>7.1.2.1 Goal: Reducing the Order’s Mean Throughput Time</td>
<td>185</td>
</tr>
<tr>
<td>7.1.2.2 Goal: Increasing Scheduling Adherence</td>
<td>185</td>
</tr>
<tr>
<td>7.1.2.3 Goal: Reducing Loss of Utilization</td>
<td>186</td>
</tr>
<tr>
<td>7.1.2.4 Goal: Reducing the WIP</td>
<td>186</td>
</tr>
<tr>
<td>7.1.3 Determining Measures</td>
<td></td>
</tr>
<tr>
<td>7.2 Bottleneck Oriented Logistic Analysis in a Circuit</td>
<td>190</td>
</tr>
<tr>
<td>7.2.1 Analysis’ Objectives</td>
<td></td>
</tr>
<tr>
<td>7.2.2 Data Compilation</td>
<td>191</td>
</tr>
<tr>
<td>7.2.3 Order Throughput Analysis</td>
<td>191</td>
</tr>
<tr>
<td>7.2.4 Workstation Analysis</td>
<td></td>
</tr>
<tr>
<td>7.2.4.1 Analysis of Key Performance Figures</td>
<td>196</td>
</tr>
<tr>
<td>7.2.4.2 Identifying Throughput Time Determining Workstations</td>
<td>198</td>
</tr>
<tr>
<td>7.2.4.3 Detailed Analysis of Chosen Work Stations</td>
<td>199</td>
</tr>
<tr>
<td>7.2.4.4 The Resist Coating Workstation</td>
<td>199</td>
</tr>
<tr>
<td>7.2.4.5 The Hot Air Leveling Workstation</td>
<td>203</td>
</tr>
<tr>
<td>7.2.4.6 Drilling Workstation</td>
<td>206</td>
</tr>
<tr>
<td>7.2.5 Quantifying the Potential for Logistic Improvement</td>
<td>207</td>
</tr>
<tr>
<td>7.2.6 Experiences in Applying Bottleneck Oriented Logistic Analyses</td>
<td>210</td>
</tr>
</tbody>
</table>
7.3 Applying the Bottleneck Oriented Logistic Analysis in a Circuit Board Insertion Department

7.3.1 Determining Throughput Time Relevant Workstations

7.3.2 Estimating Existing Potential for Logistic Improvement

7.3.3 Deriving and Implementing Workstation Specific Measures

7.3.3.1 Manual Insertion Workstation

7.3.3.2 SMD Workstation

7.3.3.3 HF Testing Workstation

7.3.4 Summary of Application Experiences

7.4 Strategies for Implementing the Bottleneck Oriented Logistic Analysis

8 Applying the Logistic Operating Curves Theory to Storage Processes

8.1 Throughput Diagram as a Model for the Logistic Procurement Process Chain

8.2 Storage Operating Curves

8.3 Determining Storage Operating Curves Using Simulations

8.4 Determining Storage Operating Curves Using an Approximation Equation

8.4.1 Ideal Storage Operating Curve

8.4.2 Integrating Plan Deviations

8.4.3 Parametrizing the Approximation Equation

8.4.4 Verifying Storage Operating Curves Using Simulations

8.5 Possible Applications

8.6 Fields and Limits of Application

8.7 Examples of Applying Storage Operating Curves in order to Evaluate Suppliers

9 Applying the Logistic Operating Curves Theory to Supply Chains

9.1 Supply Chain Objectives

9.1.1 Weighted Service Level

9.1.2 An Approximation Equation for a Service Level Operating Curve

9.2 Correlations between the Supply Chain’s Logistic Parameters

9.3 Example of a Supply Chain Logistic Analysis

9.3.1 Logistic Oriented Storage Analysis of the Manufacturer’s Finished Goods Store

9.3.1.1 Calculating Potential Based on Logistic Operating Curves

9.3.1.2 Deriving Measures
9.3.2 Conducting a Bottleneck Oriented Logistic Analysis of the Manufacturer’s Production ... 265
9.3.3 Logistic Oriented Storage Analysis of the Manufacturer’s Input Stores ... 268
9.3.4 Bottleneck Oriented Logistic Analysis of the Supplier’s Production ... 268
9.3.5 Supply Chain’s Total Potential ... 269
9.4 Summary of Applying Operating Curves to the Supply Chain .. 271

10 Conclusions .. 273

Appendix: Software Documentation .. 277

Bibliographic References ... 301

Index ... 309
Fundamentals of Production Logistics
Theory, Tools and Applications
Nyhus, P.; Wiendahl, H.-P.
2009, XIX, 312 p., Hardcover
ISBN: 978-3-540-34210-6