Contents

Section I The Role of Wetlands for Integrated Water Resources Management: Putting Theory into Practice

2 Restoring Lateral Connections Between Rivers and Floodplains: Lessons from Rehabilitation Projects 15
H. Coops, K. Tockner, C. Amoros, T. Hein, G. Quinn

<table>
<thead>
<tr>
<th>Number</th>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Threatened Life at the Aquatic–Terrestrial Interface</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Reconnecting Side-Channels Along the Rhône (France)</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Rehabilitation of Side-Channels of the River Danube (Austria)</td>
<td>21</td>
</tr>
</tbody>
</table>
2.5 ‘Environmental Flows’ for Rehabilitating Floodplain Wetlands (Australia) ... 24
2.6 Lessons from Rehabilitation Projects 25
References ... 30

3 Sustainable Agriculture and Wetlands 33
F. Rijsberman, S. de Silva

3.1 Agriculture and Wetlands: Introduction 33
3.2 Water for Food, Water for Environment 35
3.2.1 “Ecosystems Produce the Water Used by Agriculture” . 36
3.2.2 “Irrigated Agriculture Uses 70 % of the World’s Water” . 39
3.2.3 “Water Scarcity: Fact or Fiction?” 41
3.3 Producing More Rice With Less Water 43
3.4 Towards a Dialogue Among Agronomists and Environmentalists ... 44
3.4.1 Water, Food and Environment Issues in Attapeu Province, Lao PDR ... 47
3.5 Research on Sustainable Agriculture and Wetlands 48
3.6 Conclusions: Towards Sustainable Agriculture and Wetlands? ... 49
References ... 50

4 Sustainable Water Management by Using Wetlands in Catchments with Intensive Land Use 53
C. Yin, B. Shan, Z. Mao

4.1 Semi-Natural Wetlands Created by Humans Before the Industrial Age ... 53
4.2 Water Regulation by the Multipond Systems 55
4.2.1 Research Site Description ... 55
4.2.2 The Regulation Process for the Crop Water Supply by the Pond System ... 56
4.3 Other Ecological Functions of Ancient Semi-Natural Wetlands in a Modern Scientific Context 59
4.3.1 Sediment Retention Within the Watershed 60
4.3.2 Nutrient Retention and Recycling 61
4.3.3 Landscape Complexity and Biological Diversity 61
4.4 Wetlands and Human Activities in Harmony 62
4.5 Protection of Semi-Natural Wetlands Together with Natural Wetlands ... 63
References ... 64
Section III Wetland Biogeochemistry

9 Hydrological Processes, Nutrient Flows and Patterns of Fens and Bogs
 W. Bleuten, W. Borren, P.H. Glaser, T. Tsuchihara,
 E.D. Lapshina, M. Mäkilä, D. Siegel, H. Joosten, M.J. Wassen

9.1 Introduction
9.2 Appearance of Pristine Fens and Bogs
9.2.1 General
9.2.2 Climate and Mire Vegetation of the Western Siberian Taiga
9.3 Hydrology of Bogs: Examples from Canada, United States and Western Siberia
9.3.1 Aspects of Large-Scale Hydrology
9.3.2 Local Scale Hydrology of Bogs
9.3.3 Modeling a Western Siberian Bog
9.4 Fens: Analysis of a Large Pristine Fen in the River Ob Valley
9.4.1 General
9.4.2 Vegetation, Nutrients and Productivity
9.4.3 Hydrology and Modeling
9.4.4 Hydro-Ecological Integration
9.5 Discussion and Conclusion
References

10 Ecological Aspects of Microbes and Microbial Communities Inhabiting the Rhizosphere of Wetland Plants
 P.L.E. Bodelier, P. Frenzel, H. Drake, K. Küsel, T. Hurek,
 B. Reinhold-Hurek, C. Lovell, P. Megonigal, B. Sorrell

10.1 Introduction
10.2 The Microbial Habitat in the Wetland Rhizosphere
10.2.1 Root Structure and Function
10.2.2 Oxygen Distribution within Roots
10.2.3 Oxygen Concentrations and Fluxes in the Rhizosphere
References
11 Linkages Between Microbial Community Composition and Biogeochemical Processes Across Scales 239

11.1 Introduction 239
11.2 Microbial Controls on Decomposition 241
11.2.1 Decomposition of Plant Matter in Wetlands 241
11.2.2 Microbial Enzyme Activities as Indicators of Controls on Decomposition 243
11.3 Linking Decomposition with Microbial Community Composition 244
11.3.1 Anaerobic Carbon Cycle 244
11.3.2 Controls over CO₂:CH₄ Ratios in Anaerobic Respiration in Wetlands 245
11.3.3 Sulfate and Iron Reduction as Important Routes for Mineralization in Fens 250
11.3.4 Linking Community Composition with Nutrient Status in Wetlands 252
11.3.5 Plant-Associated Microbial Communities Across Landscapes 255
11.4 Linking Microbial Community Structure and Function with Environmental Parameters 259
11.4.1 Case Study: a Northern Everglades Marsh System 261
References 263
Section IV Wetlands and Climate Change Worldwide

12 Coastal Wetland Vulnerability to Relative Sea-Level Rise: Wetland Elevation Trends and Process Controls
D.R. Cahoon, P.F. Hensel, T. Spencer, D.J. Reed, K.L. McKee, N. Saintilan

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>271</td>
</tr>
<tr>
<td>12.2</td>
<td>Biotic Process Controls</td>
<td>273</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Indirect Biotic Processes</td>
<td>274</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Direct Biotic Processes</td>
<td>274</td>
</tr>
<tr>
<td>12.3</td>
<td>Hydrologic Process Controls</td>
<td>278</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Surface Wetland Hydrology</td>
<td>279</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Subsurface Wetland Hydrology</td>
<td>279</td>
</tr>
<tr>
<td>12.4</td>
<td>Findings from the SET Network</td>
<td>280</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Data Analysis</td>
<td>280</td>
</tr>
<tr>
<td>12.4.2</td>
<td>The Salt Marsh SET Network</td>
<td>282</td>
</tr>
<tr>
<td>12.4.3</td>
<td>The Mangrove Forest SET Network</td>
<td>285</td>
</tr>
<tr>
<td>12.5</td>
<td>Further Considerations</td>
<td>287</td>
</tr>
</tbody>
</table>

References | 289

13 Connecting Arctic and Temperate Wetlands and Agricultural Landscapes: The Dynamics of Goose Populations in Response to Global Change
R.L. Jefferies, R.H. Drent, J.P. Bakker

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>293</td>
</tr>
<tr>
<td>13.2</td>
<td>Links Between Modern Agriculture as a Food Source and the Increase in the Size of Arctic Goose Populations</td>
<td>296</td>
</tr>
<tr>
<td>13.3</td>
<td>Hunting Practices, Availability of Refuges, Agricultural Food Supplies and the Size of Goose Populations</td>
<td>297</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Hunting Practices in Agricultural Landscapes and the Size of Goose Populations</td>
<td>298</td>
</tr>
<tr>
<td>13.3.2</td>
<td>The Synergistic Link Between Refuges and Agriculture: Effects on Wintering and Migrating Goose Populations</td>
<td>299</td>
</tr>
<tr>
<td>13.3.3</td>
<td>The Direct and Indirect Effects of Weather Patterns and Climate Change on Wintering and Migrating Goose Populations</td>
<td>300</td>
</tr>
<tr>
<td>13.4</td>
<td>Habitat Changes in Response to Population Growth of Geese</td>
<td>303</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Effects of the Geese on Temperate Salt-Marsh Vegetation</td>
<td>303</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Effects of Geese on Arctic Coastal Vegetation</td>
<td>306</td>
</tr>
</tbody>
</table>

References | 307
Wetlands and Natural Resource Management
Verhoeven, J.T.A.; Beltman, B.; Bobbink, R.; Whigham, D.F. (Eds.)
2006, XXII, 354 p., Hardcover
ISBN: 978-3-540-33186-5