Contents

List of Symbols ... XV

Part I Focus of the Book

1 Introduction ... 3
 1.1 Application Areas of Piezoelectric Actuators 3
 1.2 Motivation and Aim of the Book 4
 1.3 State of the Scientific Research 6
 1.4 Textual Focus of the Book 11

Part II Theoretical Aspects and Closed Form Analysis

2 Piezoelectric Materials 17
 2.1 Discovery of Piezoelectricity 17
 2.2 Direct and Inverse Piezoelectric Effect 18
 2.3 Piezoelectric Ceramics 19
 2.4 Perovskit Structure of PZT 20
 2.5 Domain and Reversion Processes of PZT 21
 2.6 Electromechanical Behavior 24
 2.7 Piezoelectric Beam Bending Actuators 26

3 Linear Theory of Piezoelectric Materials 31
 3.1 Energy Density of the Elastic Deformation 31
 3.2 Energy Density of the Electrostatic Field 35
 3.3 Thermodynamics of Deformation 36
 3.3.1 Internal Energy of Elastic Piezoelectric Materials .. 38
 3.3.2 Linear Constitutive Equations and Electrical Enthalpy . 39
 3.3.3 Condensed Notation of Elastic and Piezoelectric Tensors 43
4 Theory of the Static Behavior of Piezoelectric Beam Bending Actuators .. 47
 4.1 Sectional Quantities of a Bending Beam 47
 4.2 Bernoulli Hypothesis of Beam Bending Theory 49
 4.3 Neutral Axis Position of a Multilayered Beam Bender 51
 4.4 Forces and Moments within a Multilayer System 54
 4.5 Total Stored Energy within a Multilayer System 55
 4.5.1 Total Energy in a Single Layer 56
 4.5.2 Energy in an n-layered System 57
 4.6 Canonical Conjugates and Coupling Matrix 58
 4.7 Principle of Virtual Work 60
 4.8 Theorem of Minimum Total Potential Energy 61
 4.9 Derivation of the Coupling Matrix 62
 4.9.1 Multilayer Beam Bender Subjected to an External Static Moment 63
 4.9.2 Multilayer Beam Bender Subjected to an External Static Force 65
 4.9.3 Multilayer Beam Bender Subjected to a Uniform Pressure Load 67
 4.9.4 Electrical Charge Generated by the Extensive Parameters 69
 4.10 The Constituent Equations 75

5 Piezoelectric Beam Bending Actuators and Hamilton’s Principle .. 77
 5.1 Constraints and Generalized Coordinates 77
 5.2 D’Alembert’s Principle 78
 5.3 Lagrange’s Equations 80
 5.4 Euler-Lagrange Differential Equation 83
 5.5 Hamilton’s Principle 87
 5.6 Consideration of Non-Conservative Forces 88
 5.7 Lagrange Function of Piezoelectric Beam Bending Actuators . 91
 5.8 Mechanical Work Done by Extensive Quantities and Frictional Force 95
 5.9 Variation of the Lagrange Function 98
 5.10 Variation of the Mechanical Work 99
 5.11 Differential Equations of a Piezoelectric Multilayer Beam Bender 100

6 Theory of the Dynamic Behavior of Piezoelectric Beam Bending Actuators .. 103
 6.1 Eigenmodes of a Clamped-Free Beam Bender 103
 6.2 Orthogonality of Eigenfunctions 107
 6.3 Description of Flexural Vibrations with Respect to Time 109
 6.4 The Free Damped Flexural Vibration 110
6.5 Excitation by a Harmonic Force .. 112
6.6 Excitation by a Harmonic Moment 114
6.7 Excitation by a Harmonic Uniform Pressure Load 116
6.8 Excitation by a Harmonic Driving Voltage 117
6.9 Electrical Charge Generated by Harmonic Extensive Parameters 118
6.10 Dynamic Admittance Matrix ... 121

7 Network Representation of Piezoelectric Multilayered Bending Actuators .. 123
7.1 The Ideal Rod as Transducer for Translatory and Rotatory Quantities .. 124
7.2 Bending of a Differential Beam Segment 126
7.3 The Differential Beam Segment and Corresponding Correlations .. 129
7.4 Solution Approach to the Complex Equation of Flexural Vibrations .. 133
7.5 General Solution of the Equation for Flexural Vibrations 135
7.5.1 Reference Values of a Multilayered Beam Bender 136
7.6 Solution of the Equation of Flexural Vibrations by Means of Reference Values .. 137
7.7 Admittance Matrix of a Beam Bender 137
7.7.1 Excitation by a Harmonic Force F_1 138
7.7.2 Excitation by a Harmonic Force F_2 139
7.7.3 Excitation by a Harmonic Moment M_1 140
7.7.4 Excitation by a Harmonic Moment M_2 141
7.8 Transition to the Piezoelectric Multilayer Beam Bending Actuator .. 142
7.9 The Clamped-Free Piezoelectric Multimorph 149
7.9.1 Circuit Representation of a Piezoelectric Multimorph with Respect to the Fundamental Mode 153
7.9.2 Canonical Circuit Representation of a Piezoelectric Multimorph .. 157

Part III Measurement Setup and Validation of Theoretical Aspects

8 Measurement Setup for Piezoelectric Beam Bending Actuators .. 163
8.1 Measurement Setup .. 163
8.2 Automation of Measurement Setup 167
8.2.1 Stabilization of the Beam Bending Actuator 168
8.2.2 Electrical Actuation of the Bending Actuator 169
8.2.3 Deflection Measurement by Means of Triangulation 169
8.2.4 Control of the Linear Stages 170
8.2.5 Control of the Voice-Coil-Motor 170

9 Measurements and Analytical Calculations 173
9.1 Used Multilayer Beam Bending Structure for Experimental Investigations .. 173
9.2 Static and Quasi-static Measurements 175
 9.2.1 Hysteresis Measurement 175
 9.2.2 Measurement and Analytical Calculation of Bending Curvatures Under Different Excitation Voltages 178
 9.2.3 Measurement and Analytical Calculation of Force-Deflection Characteristics 180
 9.2.4 Drift and Creep Measurements 182
9.3 Dynamic Measurements .. 184
 9.3.1 Experimental Evaluation of the Coefficient of Friction . 184
 9.3.2 Measurement and Analytical Calculation of the First and Second Eigenmode 187
 9.3.3 Measurement and Analytical Calculation of the Transfer Function .. 191

Part IV Sensor Integration for Tip Deflection Measurements

10 Piezoelectric Beam Bending Actuator with Integrated Sensor .. 199
 10.1 Smart Pneumatic Micro Valve 200
 10.2 Sensor Requirements .. 201

11 Tip Deflection Measurement - Capacitive Sensor Principle 203
 11.1 Sensor Positioning .. 203
 11.2 Sensor Electronics for Capacitive Strain Sensors 206
 11.2.1 Electronic Circuit 206
 11.2.2 Static Sensor Performance and Uncertainty of Measurement .. 212
 11.2.3 Measurement Results 213

12 Tip Deflection Measurement - Inductive Sensor Principle . 217
 12.1 Measurement Setup and Basic Structure of the Inductive Proximity Sensor .. 217
 12.2 Functioning of the Inductive Proximity Sensor 219
 12.2.1 Output Signal Performance 220
 12.3 Equivalent Network Representation 223
 12.4 Inductance of a Circular Loop Influenced by a Conductive Layer .. 227
 12.4.1 Solution Approach 227
 12.4.2 Magnetic Field of a Circular Loop 229
12.4.3 Influence of a Conductive Layer230
12.4.4 Relative Inductance Change of a Circular Loop in
 Presence of a Conductive Layer231
12.5 Measurement Results234
12.5.1 Relative Inductance Change of the Sensing Coil with
 Respect to a Conductive Copper Layer235
12.5.2 Performance of the Inductive Proximity Sensor240

13 Conclusion ..249
13.1 Summary and Results249
13.2 Outlook ..253

Part V Appendix

A Work Done by Stresses Acting on an Infinitesimal Volume
Element ..257

B Derivation of the Coupling Matrix Elements261
 B.1 Multilayer Beam Bender Subjected to an External Static
 Moment ...261
 B.2 Multilayer Beam Bender Subjected to an External Static Force 264
 B.3 Multilayer Beam Bender Subjected to a Uniform Pressure
 Load ...266
 B.4 Electrical Charge Generated by the Extensive Parameters
 ...268
 B.4.1 External Static Moment272
 B.4.2 External Static Force273
 B.4.3 External Uniform Pressure Load275

C Mechanical Potential and Kinetic Energy279

D Derivation of the Electrical Enthalpy281

E Correlation Between Material Parameters283

F Work Done by Extensive Dynamic Quantities285
 F.1 Work Done by a Force285
 F.2 Work Done by a Moment286
 F.3 Work Done by a Driving Voltage287

G On the Variation of the Lagrange Function289

H On the Variation of the Work Done by Extensive
 Quantities ...295

I On the Excitation by a Periodic Force297
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Particular Solution of the Differential Equation for Flexural Vibrations</td>
<td>299</td>
</tr>
<tr>
<td>K</td>
<td>Transition to the Differential Equations in Complex Form</td>
<td>301</td>
</tr>
<tr>
<td>L</td>
<td>Orthogonality of Different Boundary Conditions</td>
<td>305</td>
</tr>
<tr>
<td>M</td>
<td>Logarithmic Decrement</td>
<td>309</td>
</tr>
<tr>
<td>N</td>
<td>Favored Sensor Principles and Sensor Signal Estimation</td>
<td>311</td>
</tr>
<tr>
<td>N.1</td>
<td>Resistive Distance Sensors</td>
<td>312</td>
</tr>
<tr>
<td>N.1.1</td>
<td>Metallic Strain Gages</td>
<td>313</td>
</tr>
<tr>
<td>N.1.2</td>
<td>Semiconductor Strain Gages</td>
<td>314</td>
</tr>
<tr>
<td>N.2</td>
<td>Capacitive Distance Sensors</td>
<td>316</td>
</tr>
<tr>
<td>N.2.1</td>
<td>All over Covering Electrodes (double-sided)</td>
<td>316</td>
</tr>
<tr>
<td>N.2.2</td>
<td>Interdigital Electrodes (double-sided)</td>
<td>318</td>
</tr>
<tr>
<td>N.3</td>
<td>Piezoelectric Distance Sensor</td>
<td>321</td>
</tr>
<tr>
<td>N.4</td>
<td>Inductive Distance Sensor</td>
<td>323</td>
</tr>
<tr>
<td>O</td>
<td>Methods of Measuring Small Capacitances with High Resolution</td>
<td>327</td>
</tr>
<tr>
<td>O.1</td>
<td>Direct Method</td>
<td>327</td>
</tr>
<tr>
<td>O.2</td>
<td>Self-balancing Capacitance Bridge</td>
<td>328</td>
</tr>
<tr>
<td>O.3</td>
<td>Charge Measurement</td>
<td>330</td>
</tr>
<tr>
<td>O.4</td>
<td>Measurement of the Integration Time</td>
<td>331</td>
</tr>
<tr>
<td>O.5</td>
<td>Oscillator Method</td>
<td>331</td>
</tr>
<tr>
<td>P</td>
<td>To the Output Signal of the Instrumentation Amplifier</td>
<td>333</td>
</tr>
<tr>
<td>Q</td>
<td>Alternating Magnetic Field Within a Conductive Layer</td>
<td>335</td>
</tr>
<tr>
<td>R</td>
<td>Magnetic Field Calculation of a Circular Loop</td>
<td>337</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>341</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>353</td>
</tr>
</tbody>
</table>
Piezoelectric Multilayer Beam Bending Actuators
Static and Dynamic Behavior and Aspects of Sensor Integration
Ballas, R.G.
2007, XXII, 358 p., Hardcover
ISBN: 978-3-540-32641-0