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Introduction

Mankind has always been fascinated by optical properties of solids. Besides
manufacturing and availability aspects it has been the color of metals like gold,
silver, and bronze that defined their outstanding ornamental and decorative
value in history. The same is true for gemstones and minerals due to their
colorful appearance and their intense reflections caused by a high index of
refraction.

Whereas most gemstones are insulators, the precious metals are more or
less good conductors. Only fairly recently another class of materials, the semi-
conductors, have caught the interest of researchers, engineers, and technicians.
Semiconductors are situated somewhere in between metals and insulators,
even though the exact boundaries are often not that well defined. Many as-
pects of our modern civilization are based on semiconductors. Virtually all
technical equipment for everyday use contains semiconducting material in
one form or another.

The first semiconductor applications used their unique transport proper-
ties. Contacts of semiconductors with metals were used in rectifiers and diodes.
Then the invention of the transistor led to fabulous developments, most promi-
nently in computing and information technology. The application of optical
and optoelectronic semiconductor properties was somewhat delayed, mainly
because of the fact that the initially dominant semiconductors, silicon and
germanium, have indirect optical gaps and are thus not well suited for optical
devices. Today, however, compound semiconductors like GaAs and its rela-
tives are basis materials for optoelectronic applications, e.g., in light-emitting
diodes, semiconductor lasers, etc. Besides the GaAs-like materials that are
composed of elements from groups III and V of the periodic system, also II–
VI compounds, as well as ternary, or even quaternary systems are becoming
increasingly relevant.

Over the years, fundamental research on the optical properties of semi-
conductors has revealed a large number of fascinating effects. However, a
real boost came with the development of techniques that allow for controlled
atomic growth and thus nanoscale structuring of semiconductor materials.
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Using epitaxial growth techniques and modern lasers that emit ultrashort
light pulses in the range of femtoseconds makes it now possible to study
optoelectronic linear and nonlinear processes on ultrafast time scales in struc-
tures characterized by length scales down to a few nm. Using structuring
on nanometer (nm) scales the spatial dimension became a relevant physical
parameter. Effectively zero-, one-, and two-dimensional systems can be fabri-
cated and studied by growing suitable semiconductor heterostructures. These
nanostructures may resemble atoms (quantum dots), wires (quantum wires),
films (quantum wells), superlattices (periodic arrays of quantum wells), etc.

Using ultrafast laser pulses, electronic processes can be monitored on time
scales that are comparable to typical interaction times among the electronic
excitations. It is also possible to investigate the dynamics of the coherently
excited many-particle system on time scales shorter than typical decoher-
ence times. This coherent regime has attracted the interest of researchers
most recently, as the concepts of “ultrafast switching”, “coherent control”,
or “quantum computing” rely on processes which are destroyed by phase-
breaking interactions.

By now, a large amount of experimental and theoretical work on opti-
cal properties of semiconductors in the coherent ultrafast time regime exists.
The interpretation of the experimental findings requires a thorough treatment
of the semiconductor as a many-particle system, where the often dominant
processes result from the Coulomb interaction between the optically excited
charge carriers. In addition, realistic semiconductor nanostructures always
show a certain degree of disorder, which has a profound influence on their
optoelectronic properties. One often applies external ac or dc electrical or
magnetic fields to semiconductor structures. Such fields lead to new dynami-
cal processes which might be useful for future applications.

1.1 Coherence

The dynamics of a classical plane wave with given wave vector and frequency
is determined by the solution of the relevant wave equation. Generally, the
wave is described by a spatially and temporally varying field Ψ(r, t). The
propagation of this wave function in free space is called coherent if, by knowing
the amplitude and phase at a given point in space at a given time, we can
immediately tell the amplitudes and phases at all other times and space points.

In this book, we are dealing exclusively with temporal, not spatial coher-
ence. A formal definition of temporal coherence of an arbitrary function f(t)
is given by the autocorrelation function

F (t) = lim
T→∞

1
T

∫ T

0

f∗(t ′)f(t ′ + t)dt . (1.1)

The complex conjugate has been used in this definition in case the function is
complex valued. If we find that F (t) decays in time, we say that the coherence
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of the function f(t) is characterized by a finite coherence time, i.e., the function
f(t) is subject to dephasing.

In most experiments, it is not the function f(t) which describes, e.g., an
electric field, that is measured. In a statistical ensemble, the expectation value
of the field is often zero, i.e.,

〈f(t)〉 = 0 . (1.2)

In such a case, one may still record the related intensity If , which is given by

If (t) = 〈|f(t)|2〉. (1.3)

The intensity is an equal-time autocorrelation function and can be nonzero
even if 〈f(t)〉 = 0.

Consider that f(t) is the superposition of two functions f1(t) and f2(t).

f(t) = f1(t) + f2(t). (1.4)

One then measures

〈|f1(t) + f2(t)|2〉 = 〈|f1(t)|2〉 + 〈|f2(t)|2〉 + 2�〈f∗
1 (t)f2(t)〉. (1.5)

Here, the third term on the right-hand side describes the interference of the
two fields f1 and f2. This term is finite only if f1 and f2 are at least to a
certain degree coherent to each other. Thus, in order to observe interference
the temporal evolution of the phases of f1 and f2 must be determined by
the coherent dynamics governed by, e.g., a wave equation. If, however, the dy-
namics of either f1 or f2 is dominated by incoherent processes, e.g., scattering
events, interference is absent.

In nature, particles and waves interact with the surrounding media. The
resulting scattering processes depend both on the nature of the particle or
wave and that of the medium. In order to determine the trajectory of a clas-
sical particle, one has to insert all the (possibly time-dependent) forces into
Newton’s equation of motion and solve for r(t), i.e., compute the particle’s
position as a function of time. In many cases one does not have the full infor-
mation about all the acting forces, but only knows some statistical properties.
In such a case, one has to resort to a statistical description yielding distribu-
tions of the dynamical variables of the particle.

In the case of waves we can distinguish two different cases:

(i) Imagine a source that emits a stationary wave into free space. At some
point, this wave enters a medium that is characterized by static scatter-
ing centers. The wave is then scattered in such a way that a distorted
wave pattern is formed. For a stationary situation this wave pattern is
also stationary and is therefore still coherent. It can be computed from
the wave equation, where the stationary scattering processes have to be
included. This means, in particular, that the phases in all points are rigidly
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correlated. Examples are Bloch waves of electrons in atomic lattices and
electron waves in disordered solids as well as light waves in photonic crys-
tals and in disordered dielectrics. Also, waves in random stationary media
are coherent in this sense, although their wave pattern can be very com-
plicated.

(ii) If the medium possesses scattering centers that have some temporal dy-
namics, e.g., such as those of a gas of particles, we could still try to include
this dynamics into the wave equation and attempt a solution for the scat-
tered wave. However, often the trajectories of the scattering particles are
not known in detail. Only their statistical properties can be specified, e.g.,
by giving the temperature and the density if the scattering medium is a
thermal (heat) bath. Since we do not have full knowledge of the dynamics
of the bath particles, we cannot hope to obtain all possible information
about the scattered wave. Only some average quantities are accessible
in such a situation. As the intensity of the scattered wave is related to
some kind of local energy density, it seems reasonable to assume that we
can still obtain decent information about the spatial and temporal behav-
ior of the amplitude. However, the information about the phases is par-
tially or completely lost. In this case, one says that the phase has suffered
phase-breaking interactions or dephasing. In other words, the wave-like
excitation is no longer coherent. Since the information about the inten-
sity is less sensitive, we arrive at a description where some local object,
e.g., a maximum of the intensity, moves in space. This is strongly remi-
niscent of the dynamics of a classical particle. In fact, dephasing destroys
the wave-like features that are introduced into the description by using
quantum-mechanical concepts, and we are left with a classical description
of particle motion.

In the coherent regime, on the other hand, we retain the full coherent nature
of the excitation, which this book focuses on. We will see, however, that even
in this coherent regime optical phase coherence can be limited if this notion is
defined in terms of certain properties of experimentally determined transient
signals.

1.2 Basic Optical Principles

The measurement of optical properties of solids often follows the scheme where
one obtains information about the material system by applying an external
field and recording the response of the system to this field. In many cases,
one is interested in the equilibrium properties of the material system. These
properties can be investigated by experiments in the linear response regime,
where the response linearly depends on the excitation field. Examples are
linear optical absorption spectra, refractive index, etc.

Modern semiconductor optics, however, often investigates nonlinear opti-
cal properties. In particular, if dynamical processes are of interest, one often
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applies sequences of ultrashort laser pulses to the system and records the sub-
sequent dynamical response. Examples are pump–probe and four-wave-mixing
experiments. The nonlinear response can either be measured in the frequency
domain (bleaching, induced absorption, etc.) or in the time domain (decay,
echoes, quantum beats, etc.).

An interesting application of ultrafast optical measurements is related
to transport properties. As the laser field generates populations of electrons
and holes, the subsequent spatio-temporal dynamics of these particles can be
investigated. For these studies, local excitation and detection schemes can be
applied, e.g., using near-field optical microscopy. Such studies yield informa-
tion about the interesting and intricate interplay between structural disorder
and many-particle interactions and their influence on the spatio-temporal dy-
namics of the optically generated excitations. Alternatively, coherent-control
schemes make it possible to induce particle currents on an ultrafast time scale
by homogeneous optical excitation of the semiconductor system.

Besides optical excitation, also externally applied electric and magnetic ac
and dc fields lead to interesting dynamical signatures. Examples are Bloch
oscillations in dc-biased superlattices, dynamical localization in an ordered
semiconductor induced by an ac electric field, and Aharonov–Bohm oscil-
lations of excitons and biexcitons in semiconductor rings subjected to a
magnetic flux. Since these dynamical effects are related to moving charges,
the system emits electromagnetic radiation. The upper time limit at which
the mentioned coherent dynamical processes can be observed is determined
by phase-breaking interactions. As these occur typically on time scales in
the picosecond range for the case of excitonic excitations in typical semi-
conductors, parameters have to be chosen such that the relevant periods
of the coherent oscillations are shorter than this time limit. Considering
picosecond periods, the emitted signals thus have frequencies in the terahertz
range.

1.3 Relevant Material Systems

Most of the experiments mentioned so far have been performed mainly on
semiconductor nanostructures with reduced effective spatial dimensions. Here,
one-dimensional quantum wires and two-dimensional quantum films and ar-
rays composed of these structures are widely used examples. The III–V system
GaAs and similar III–V systems are prototype materials. However, II–VI sys-
tems and some wide-gap III–V compounds like GaN have larger excitonic
binding energies. Therefore, these materials are considered to be useful candi-
dates for some applications. However, the majority of experiments have been
performed on GaAs-type semiconductor heterostructures. These also domi-
nate most applications in information technology. In this book, we therefore
predominantly take fundamental electronic properties of this class of mate-
rials as a basis for the parameters of our schematic model. These include
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effective electron and hole masses, exciton binding energies, optical selec-
tion rules, etc. However, extensions to other material parameters are often
straightforward.

In the main part of our calculations, we concentrate on a one-dimensional
model, the evident realization of which would be quantum wires. However,
in many cases the predictions of the model do not strongly depend on the
dimensionality of the system. Therefore, they can, mutatis mutandis, be taken
as a guideline also for experiments on two-dimensional or three-dimensional
heterostructures like quantum wells and superlattices.

1.4 Related Systems

As mentioned above, the results obtained on the basis of the schematic one-
dimensional model can be easily transferred to one-dimensional heterostruc-
tures like quantum wires. One could also attempt to apply the predictions to
other, more natural one-dimensional systems like polymeres, liquid crystals
composed of disc-shaped molecules (discotic crystals), and even to biologi-
cal systems. However, these systems belong to the class of highly correlated
electron systems, and the theoretical approach used here is often not directly
applicable. The linear optical spectra of such systems are studied in ongoing
research and the investigation of dynamical processes of optical excitations is
a fascinating field that appears to be far from being settled yet.

1.5 Aim of the Book

Although considerable progress has been achieved in the theoretical descrip-
tion of coherent optical properties of semiconductor structures, a full theo-
retical treatment taking into account all details of the real heterostructure,
the full many-particle Coulomb interaction, disorder, coupling to lattice vib-
rations and external fields is beyond the capability of even the largest mod-
ern computing facilities. Therefore, one is forced to simplify the theoretical
model by neglecting certain complications or by considering a simplified elec-
tronic or atomic structure. Even then, a numerical simulation of the dynamical
processes often presents a formidable problem. In particular, the many-particle
interaction leads to a hierarchy of equations or to an infinite number of rele-
vant terms.

In this book, we present a discussion of coherent semiconductor optics
starting from the simplest possible model of a semiconductor. The advantage
of this approach, besides leading to mathematically transparent equations
and numerically tractable simulation schemes even for situations including
external electric and magnetic fields and disorder, lies in the fact that the
physical principles of the various dynamical processes can be clarified and
introduced without being distracted by numerous details necessary to describe
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a real semiconductor structure. On the other hand, one should not expect that
such a schematic model quantitatively accounts for all of the detailed features
observed in experiments on a particular structure.

Nevertheless, for the time being, a number of new predictions and interpre-
tations concerning dynamical processes of optical excitations in the coherent
regime is only possible on the basis of such a schematic model. Although it
is conceivable that these theories will be substantiated for realistic situations
once the next generation of computers is available, the underlying general
physical principles can most easily be perceived on the basis of the schematic
model.

The presentation of this book is based on a one-dimensional tight-binding
model for a semiconductor with finite length. If periodic boundary conditions
are applied, this model represents a ring-like structure. The theoretical treat-
ment will in most cases make use of a real-space representation, which allows
us to incorporate disorder in a most natural way and to consider structures
with a finite length.

There is also a tutorial reason for working with such a model system.
Coherent optical properties were first observed for atomic and molecular sys-
tems because of their much longer phase relaxation times compared to solids.
The theoretical models used in this context were based on systems having
only a few single-particle energy levels. These few-level systems allow for an
easy and transparent introduction of many dynamic processes initiated by
ultrashort laser pulses. The transfer of the developed concepts to a solid is
then relatively straightforward. Complications and fascinating differences to
few-level systems arise mainly from the many-particle Coulomb interaction
which has to be implemented into the model. Coulomb effects are responsible
for the mutual repulsion of carriers with equal charges and for new resonances
due to the attractive interaction between the oppositely charged electrons and
holes.

When introducing students to the field of semiconductor optics, we reali-
zed that, although there is a large amount of theoretical work on dynamical
processes of optical excitations in the coherent regime, a presentation that
summarizes the fundamental principles and explanations without going into
material-specific details is lacking. In this book, the material is therefore pre-
sented at a level useful for students intending to work in the field of semicon-
ductor optics. It is also suitable for researchers more interested in applications
of optoelectronic devices as it provides a basis for a fundamental understand-
ing of optical properties of semiconductor heterostructures in the coherent
regime.

This book consists of three parts. In Part I we develop the theoretical
concepts and the equations of motion, which form the basis of the fol-
lowing two parts. Part II deals with applications of the theory to level
systems and the semiconductor model, while Part III is devoted to special
dynamic properties of semiconductors that can be studied by coherent optical
experiments.
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1.6 Necessary Prerequisites

In the first place this book is written for students intending to learn the
principles of modern semiconductor optics. They should have some knowledge
of quantum mechanics, including the basics of second quantization. In the
introductory chapters describing few-level systems we have, however, avoided
using second quantization and apply the Dirac bra and ket notation. This is
sufficient since many-particle interactions are not considered here. However,
for the discussion of many-particle interaction effects in the chapters dealing
with the semiconductor system, second quantization techniques are needed.

Some background knowledge of solid state physics is helpful, but is not
absolutely necessary. As far as mathematics is concerned, the reader should
be familiar with simple differential equations and with the Fourier transfor-
mation.

1.7 Suggested Reading

1. L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Wiley,
New York 1975)

2. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).
3. M. Born and E. Wolf, Principles of Optics (Pergamon, New York 1970)
4. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and

Atoms (Wiley, New York 1989)
5. H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of

Semiconductors (Springer, Berlin 1996)
6. H. Haug and S.W. Koch, Quantum Theory of the Optical and Electronic

Properties of Semiconductors, 4th edn. (World Scientific, Singapore 2004)
7. S. Glutsch, Excitons in Low-Dimensional Semiconductors, Springer Series

in Solid-State Sciences, Vol. 141 (Springer, Berlin 2004)
8. J.D. Macomber, The Dynamics of Spectroscopic Transitions (Wiley, New

York 1976)
9. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New

York 1995)
10. N. Peyghambarian, S.W. Koch, and A. Mysyrowicz, Introduction to Semi-

conductor Optics (Prentice Hall, Englewood Cliffs, New Jersey 1993)
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