Contents

1 Solid-State Fermentation Bioreactor Fundamentals: Introduction and Overview

David A. Mitchell, Marin Berović, and Nadia Krieger
1.1 What Is “Solid-state Fermentation”? ... 1
1.2 Why Should We Be Interested in SSF? .. 3
1.3 What Are the Current and Potential Applications of SSF? 5
1.4 Why Do We Need a Book on the Fundamentals of SSF Bioreactors? 6
1.5 How Is this Book Organized? ... 8
 1.5.1 Introduction to Solid-State Fermentation and Bioreactors 9
 1.5.2 Introduction to the Various Classes of SSF Bioreactors 9
 1.5.3 Fundamentals of Modeling of SSF Bioreactors 10
 1.5.4 Modeling Case Studies of SSF Bioreactors 11
 1.5.5 Key Issues Associated with SSF Bioreactors 11
 1.5.6 A Final Word ... 12
Further Reading .. 12

2 The Bioreactor Step of SSF: A Complex Interaction of Phenomena

David A. Mitchell, Marin Berović, Montira Nopharatana, and Nadia Krieger
2.1 The Need for a Qualitative Understanding of SSF 13
2.2 The General Steps of an SSF Process ... 14
2.3 The Bioreactor Step of an SSF Process ... 16
2.4 The Physical Structure of SSF Bioreactor Systems 17
 2.4.1 A Macroscale View of the Phases in an SSF Bioreactor 17
 2.4.2 A Microscale Snapshot of the Substrate Bed 20
2.5 A Dynamic View of the Processes Occurring ... 22
 2.5.1 A Dynamic View with a Time Scale of Seconds to Minutes 22
 2.5.2 A Dynamic View with a Time Scale of Hours to Days 24
2.6 Where Has this Description Led Us? ... 31
Further Reading .. 32

3 Introduction to Solid-State Fermentation Bioreactors

David A. Mitchell, Marin Berović, and Nadia Krieger
3.1 Introduction... 33
3.2 Bioreactor Selection and Design: General Questions 34
 3.2.1 The Crucial Questions ... 35
 3.2.2 Other Questions to Consider ... 36
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 Overview of Bioreactor Types</td>
<td>38</td>
</tr>
<tr>
<td>3.3.1 Basic Design Features of the Various Bioreactor Types</td>
<td>38</td>
</tr>
<tr>
<td>3.3.2 Overview of Operating Variables</td>
<td>40</td>
</tr>
<tr>
<td>3.4 A Guide for Bioreactor Selection</td>
<td>41</td>
</tr>
<tr>
<td>Further Reading</td>
<td>43</td>
</tr>
<tr>
<td>4 Heat and Mass Transfer in Solid-State Fermentation Bioreactors: Basic Principles</td>
<td>45</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>45</td>
</tr>
<tr>
<td>4.2 An Overall Balance Over the Bioreactor</td>
<td>45</td>
</tr>
<tr>
<td>4.3 Looking Within the Bioreactor in More Detail</td>
<td>47</td>
</tr>
<tr>
<td>4.3.1 Phenomena Within Subsystems Within the Bioreactor</td>
<td>47</td>
</tr>
<tr>
<td>4.3.2 Transfer Between Subsystems When the Substrate Bed Is Treated</td>
<td>50</td>
</tr>
<tr>
<td>as a Single Pseudo-Homogeneous Phase</td>
<td></td>
</tr>
<tr>
<td>4.3.3 Transfer Between Subsystems When the Substrate Bed Is Treated</td>
<td>51</td>
</tr>
<tr>
<td>as Two Separate Phases</td>
<td></td>
</tr>
<tr>
<td>4.3.4 Bulk Gas Flow Patterns and Pressure Drops</td>
<td>53</td>
</tr>
<tr>
<td>4.3.5 Mixing Patterns in Agitated Beds of Solids</td>
<td>56</td>
</tr>
<tr>
<td>Further Reading</td>
<td>56</td>
</tr>
<tr>
<td>5 The Scale-up Challenge for SSF Bioreactors</td>
<td>57</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>5.2 The Challenges Faced at Large Scale in SLF and SSF</td>
<td>57</td>
</tr>
<tr>
<td>5.3 The Reason Why Scale-up Is not Simple</td>
<td>58</td>
</tr>
<tr>
<td>5.4 Approaches to Scale-up of SSF Bioreactors</td>
<td>63</td>
</tr>
<tr>
<td>Further Reading</td>
<td>64</td>
</tr>
<tr>
<td>6 Group I Bioreactors: Unaerated and Unmixed</td>
<td>65</td>
</tr>
<tr>
<td>6.1 Basic Features, Design, and Operating Variables for Tray-type</td>
<td>65</td>
</tr>
<tr>
<td>Bioreactors</td>
<td></td>
</tr>
<tr>
<td>6.2 Use of Bag Systems in Modern Processes</td>
<td>66</td>
</tr>
<tr>
<td>6.3 Heat and Mass Transfer in Tray Bioreactors</td>
<td>67</td>
</tr>
<tr>
<td>6.3.1 Oxygen Profiles Within Trays</td>
<td>67</td>
</tr>
<tr>
<td>6.3.2 Temperature Profiles Within Trays</td>
<td>69</td>
</tr>
<tr>
<td>6.3.3 Insights from Dynamic Modeling of Trays</td>
<td>71</td>
</tr>
<tr>
<td>6.4 Conclusions</td>
<td>75</td>
</tr>
<tr>
<td>Further Reading</td>
<td>76</td>
</tr>
</tbody>
</table>
7 Group II Bioreactors: Forcefully-Aerated Bioreactors Without Mixing 77
David A. Mitchell, Penjit Srinophakun, Nadia Krieger, and Oscar F. von Meien
7.1 Introduction .. 77
7.2 Basic Features, Design, and Operating Variables for Packed-Bed Bioreactors .. 77
7.3 Experimental Insights into Packed-Bed Operation .. 81
 7.3.1 Large-Scale Packed-Beds ... 82
 7.3.2 Pilot-Scale Packed-Beds ... 83
 7.3.3 Laboratory-scale Packed-beds .. 84
7.4 Conclusions on Packed-Bed Bioreactors ... 93
Further Reading ... 94

8 Group III: Rotating-Drum and Stirred-Drum Bioreactors 95
David A. Mitchell, Deidre M. Stuart, Matthew T. Hardin, and Nadia Krieger
8.1 Introduction .. 95
8.2 Basic Features, Design, and Operating Variables for Group III Bioreactors .. 95
8.3 Experimental Insights into the Operation of Group III Bioreactors 98
 8.3.1 Large-Scale Applications ... 98
 8.3.2 Pilot-Scale Applications .. 100
 8.3.3 Small-Scale Applications ... 101
8.4 Insights into Mixing and Transport Phenomena in Group III Bioreactors .. 104
 8.4.1 Solids Flow Regimes in Rotating Drums ... 105
 8.4.2 Gas Flow Regimes in the Headspaces of Rotating Drums 110
8.5 Conclusions on Rotating-Drum and Stirred-Drum Bioreactors 112
Further Reading ... 114

9 Group IVa: Continuously-Mixed, Forcefully-Aerated Bioreactors 115
David A. Mitchell, Nadia Krieger, Marin Berović, and Luiz F.L. Luz Jr
9.1 Introduction .. 115
9.2 Basic Features, Design, and Operating Variables of Group IVa Bioreactors .. 115
9.3 Where Continuously-Agitated, Forcefully-Aerated Bioreactors Have Been Used ... 117
 9.3.1 Stirred Beds with Mechanical Agitators ... 117
 9.3.2 Gas-Solid Fluidized Beds ... 121
 9.3.3 Bioreactors Mixed by the Motion of the Bioreactor Body 123
9.4 Insights into Mixing and Transport Phenomena in Group IVa Bioreactors .. 125
9.5 Conclusions on Group IVa Bioreactors .. 128
Further Reading ... 128
10 Group IVb: Intermittently-Mixed Forcefully-Aerated Bioreactors 129
David A. Mitchell, Oscar F. von Meien, Luiz F.L. Luz Jr, Nadia Krieger,
J. Ricardo Pérez-Correa, and Eduardo Agosin
10.1 Introduction .. 129
10.2 Basic Features of Group IVb Bioreactors ... 129
10.3 Experimental Insights into the Performance of Group IVb
 Bioreactors .. 131
 10.3.1 Large-Scale Intermittently-Mixed Bioreactors 131
 10.3.2 Pilot-Scale Intermittently-Mixed Bioreactors 135
 10.3.3 Laboratory-Scale Intermittently-Mixed Bioreactors 138
10.4 Insights into Mixing and Transport Phenomena in Group IVb
 Bioreactors .. 138
10.5 Conclusions on Group IVb Bioreactors ... 140
Further Reading .. 140

11 Continuous Solid-State Fermentation Bioreactors.................................. 141
Luis B. R. Sánchez, Morteza Khanahmadi, and David A. Mitchell
11.1 Introduction .. 141
11.2 Basic Features of Continuous SSF Bioreactors 141
 11.2.1 Equipment .. 141
 11.2.2 Flow Patterns: Real-Flow Models ... 146
11.3 Continuous Versus Batch Mode of Operation 148
 11.3.1 Reduction of Upstream and Downstream Investment 148
 11.3.2 Uniformity of the Product from Batch and Continuous
 Bioreactors .. 149
 11.3.3 Enhanced Production Rates ... 150
 11.3.4 Contamination ... 150
11.4 Comparison by Simulation of the Three CSSFBs 152
 11.4.1 Continuous Tubular Flow Bioreactors (CTFBs) with Recycling... 152
 11.4.2 Continuous Rotating Drum Bioreactor (CRDB) 154
 11.4.3 Continuous Stirred Tank Bioreactor (CSTB) 155
 11.4.4 Evaluation of the Various CSSFB Configurations 156
11.5 Scientific and Technical Challenges for CSSFBs 158
Further Reading .. 158

12 Approaches to Modeling SSF Bioreactors.. 159
David A. Mitchell, Luiz F.L. Luz Jr, Marin Berović, and Nadia Krieger
12.1 What Are Models and Why Model SSF Bioreactors? 159
12.2 Using Models to Design and Optimize an SSF Bioreactor 161
 12.2.1 Initial Studies in the Laboratory ... 161
 12.2.2 Current Bioreactor Models as Tools in Scale-up 163
 12.2.3 Use of the Model in Control Schemes 164
12.3 The Anatomy of a Model .. 164
12.4 The Seven Steps of Developing a Bioreactor Model 167
 12.4.1 Step 1: Know What You Want to Achieve and the Effort You
 Are Willing to Put into Achieving It 170
12.4.2 Step 2: Draw the System at the Appropriate Level of Detail and Explicitly State Assumptions..170
12.4.3 Step 3: Write the Equations..171
12.4.4 Step 4: Estimate the Parameters and Decide on Values for the Operating Variables..173
12.4.5 Step 5: Solve the Model ...174
12.4.6 Step 6: Validate the Model...175
12.4.7 Step 7: Use the Model ..177

Further Reading ...177

13 Appropriate Levels of Complexity for Modeling SSF Bioreactors179
David A. Mitchell, Luiz F.L. Luz Jr, Marin Berović, and Nadia Krieger
13.1 What Level of Complexity Should We Aim for in an SSF Bioreactor Model?...179
13.2 What Level of Detail Should Be Used to Describe the Growth Kinetics?...179
13.2.1 Growth Should Be Treated as Depending on Which Factors?180
13.2.2 Is It Worthwhile to Describe the Spatial Distribution of the Biomass at the Microscale? ...182
13.2.3 Typical Features of the Kinetic Sub-models183
13.3 What Level of Detail Should Be Used to Describe Transport Processes? ...183
13.4 At the Moment Fast-Solving Models Are Useful185
13.5 Having Decided on Fast-Solving Models, How to Solve Them?188
13.6 Conclusions..188

Further Reading ...189

14 The Kinetic Sub-model of SSF Bioreactor Models: General Considerations..191
David A. Mitchell and Nadia Krieger
14.1 What Is the Aim of the Kinetic Analysis? ...191
14.2 How Will Growth Be Measured Experimentally?194
14.2.1. The Problem of Measuring Biomass in SSF.................................194
14.2.2 Indirect Approaches to Monitoring Growth196
14.3 What Units Should Be Used for the Biomass?197
14.3.1 Grams of Biomass per Gram of Fresh Sample199
14.3.2 Grams of Biomass per Gram of Dry Sample..................................199
14.3.3 Grams of Biomass per Gram of Initial Fresh or Dry Sample200
14.3.4 Which Set of Units Is Best to Use for Expressing the Biomass?....201
14.4 Kinetic Profiles and Appropriate Equations ..201
14.5 Conclusions..204

Further Reading ...205
15 Growth Kinetics in SSF Systems: Experimental Approaches 207
 David A. Mitchell and Nadia Krieger
 15.1 Experimental Systems for Studying Kinetics 207
 15.1.1. Flasks in an Incubator ... 208
 15.1.2. Columns in a Waterbath .. 210
 15.1.3. Comparison of the Two Systems 211
 15.2 Experimental Planning ... 211
 15.3 Estimation of Biomass from Measurements of Biomass Components ... 214
 15.3.1 Suitable Systems for Undertaking Calibration Studies 214
 15.3.2 Conversion of Measurements of Components of the Biomass 216
 15.3.3 Limitations of these Calibration Methods 217
 15.4 Conclusion ... 217
 Further Reading ... 217

16 Basic Features of the Kinetic Sub-model ... 219
 David A. Mitchell, Graciele Viccini, Lilik Ikasari, and Nadia Krieger
 16.1 The Kinetic Sub-model Is Based on a Differential Growth Equation ... 219
 16.2 The Basic Kinetic Expression ... 220
 16.3 Incorporating the Effect of the Environment on Growth 222
 16.3.1 Incorporating the Effect of Temperature on Growth 225
 16.3.2 Incorporating the Effect of Water Activity on Growth 228
 16.3.3 Combining the Effects of Several Variables 230
 16.4 Modeling Death Kinetics ... 231
 16.4.1 General Considerations in Modeling of Death Kinetics 231
 16.4.2 Approaches to Modeling Death Kinetics that Have Been Used 232
 16.5 Conclusion ... 234
 Further Reading ... 234

17 Modeling of the Effects of Growth on the Local Environment 235
 David A. Mitchell and Nadia Krieger
 17.1 Introduction ... 235
 17.2 Terms for Heat, Water, Nutrients, and Gases 237
 17.2.1 Metabolic Heat Production .. 237
 17.2.2 Water Production ... 238
 17.2.3 Substrate and Nutrient Consumption 238
 17.2.4 Oxygen Consumption and Carbon Dioxide Production 239
 17.3 Modeling Particle Size Changes ... 243
 17.3.1 An Empirical Equation for Particle Size Reduction 244
 17.3.2 How to Model Particle Size Changes in Bioreactor Models? 245
 17.4 Product Formation – Empirical Approaches 246
 17.5 Conclusions ... 247
 Further Reading ... 247
18 Modeling of Heat and Mass Transfer in SSF Bioreactors

David A. Mitchell, Oscar F. von Meien, Luiz F.L. Luz Jr, and Marin Berović

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 Introduction</td>
<td>249</td>
</tr>
<tr>
<td>18.2 General Forms of Balance Equations</td>
<td>249</td>
</tr>
<tr>
<td>18.3 Conduction</td>
<td>252</td>
</tr>
<tr>
<td>18.3.1 Conduction Across the Bioreactor Wall</td>
<td>252</td>
</tr>
<tr>
<td>18.3.2 Conduction Within a Phase</td>
<td>253</td>
</tr>
<tr>
<td>18.4 Convection</td>
<td>255</td>
</tr>
<tr>
<td>18.4.1 Convection at the Bioreactor Wall</td>
<td>255</td>
</tr>
<tr>
<td>18.4.2 Convective Heat Removal from Solids to Air</td>
<td>256</td>
</tr>
<tr>
<td>18.4.3 Convective Heat Removal Due to Air Flow Through the Bed</td>
<td>258</td>
</tr>
<tr>
<td>18.5 Evaporation</td>
<td>259</td>
</tr>
<tr>
<td>18.5.1 Evaporation from the Solids to the Air Phase</td>
<td>260</td>
</tr>
<tr>
<td>18.6 Conclusions</td>
<td>263</td>
</tr>
</tbody>
</table>

Further Reading: 263

19 Substrate, Air, and Thermodynamic Parameters for SSF Bioreactor Models

David A. Mitchell, Oscar F. von Meien, Luiz F.L. Luz Jr, and Marin Berović

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1 Introduction</td>
<td>265</td>
</tr>
<tr>
<td>19.2 Substrate Properties</td>
<td>265</td>
</tr>
<tr>
<td>19.2.1 Particle Size and Shape</td>
<td>266</td>
</tr>
<tr>
<td>19.2.2 Particle Density</td>
<td>267</td>
</tr>
<tr>
<td>19.2.3 Bed Packing Density</td>
<td>268</td>
</tr>
<tr>
<td>19.2.4 Porosity (Void Fraction)</td>
<td>270</td>
</tr>
<tr>
<td>19.2.5 Water Activity of the Solids</td>
<td>271</td>
</tr>
<tr>
<td>19.3 Air Density</td>
<td>273</td>
</tr>
<tr>
<td>19.4 Thermodynamic Properties</td>
<td>274</td>
</tr>
<tr>
<td>19.4.1 Saturation Humidity</td>
<td>275</td>
</tr>
<tr>
<td>19.4.2 Heat Capacity of the Substrate Bed</td>
<td>276</td>
</tr>
<tr>
<td>19.4.3 Enthalpy of Vaporization of Water</td>
<td>277</td>
</tr>
</tbody>
</table>

Further Reading: 278

20 Estimation of Transfer Coefficients for SSF Bioreactors

David A. Mitchell, Oscar F. von Meien, Luiz F.L. Luz Jr, and Marin Berović

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1 Introduction</td>
<td>279</td>
</tr>
<tr>
<td>20.2 Thermal Conductivities of Substrate Beds</td>
<td>279</td>
</tr>
<tr>
<td>20.3 Heat Transfer Coefficients Involving the Wall</td>
<td>280</td>
</tr>
<tr>
<td>20.3.1 Bed-to-Wall Heat Transfer Coefficients</td>
<td>281</td>
</tr>
<tr>
<td>20.3.2 Wall-to-Headspace Heat Transfer Coefficients</td>
<td>281</td>
</tr>
<tr>
<td>20.3.3 Wall-to-Surroundings Heat Transfer Coefficients</td>
<td>282</td>
</tr>
<tr>
<td>20.3.4 Overall Heat Transfer Coefficients</td>
<td>282</td>
</tr>
</tbody>
</table>
20.4 Solids-to-Air Heat and Mass Transfer Coefficients Within Beds........... 283
20.5 Bed-to-Headspace Transfer Coefficients ... 284
20.6 Conclusions .. 289
Further Reading .. 289

21 Bioreactor Modeling Case Studies: Overview ... 291
David A. Mitchell
21.1 What Can the Models Be Used to Do? .. 291
21.2 Limitations of the Models .. 292
21.3 The Amount of Detail Provided about Model Development 293
21.4 The Order of the Case Studies .. 294

22 A Model of a Well-mixed SSF Bioreactor ... 295
David A Mitchell and Nadia Krieger
22.1 Introduction .. 295
22.2 Synopsis of the Model .. 295
22.2.1 The System, Equations, and Assumptions 295
22.2.2 Values of Parameters and Variables ... 301
22.3 Insights the Model Gives into the Operation of Well-Mixed Bioreactors .. 303
22.3.1 Insights into Operation at Laboratory Scale 303
22.3.2 Insights into Operation at Large Scale .. 307
22.3.3 Effect of Scale and Operation on Contributions to Cooling of the Solids .. 310
22.4 Conclusions on the Operation of Well-Mixed Bioreactors 312
Further Reading .. 314

23 A Model of a Rotating-Drum Bioreactor .. 315
David A. Mitchell, Deidre M. Stuart, and Nadia Krieger
23.1 Introduction .. 315
23.2 A Model of a Well-Mixed Rotating-Drum Bioreactor 315
23.2.1 Synopsis of the Mathematical Model and its Solution 315
23.2.2 Predictions about Operation at Laboratory Scale 320
23.2.3 Scale-up of Well-Mixed Rotating-Drum Bioreactors 325
23.3 What Modeling Work Says about Rotating-Drum Bioreactors
Without Axial Mixing .. 328
23.4 Conclusions on the Design and Operation of Rotating-Drum Bioreactors .. 329
Further reading .. 330

24 Models of Packed-Bed Bioreactors ... 331
David A. Mitchell, Penjit Srinophakun, Oscar F. von Meien, Luiz F.L. Luz Jr, and Nadia Krieger
24.1 Introduction .. 331
24.2 A Model of a Traditional Packed-Bed Bioreactor 331
24.2.1 Synopsis of the Mathematical Model and its Solution 333
24.2.2 Base-Case Predictions ... 334
24.2.3 Insights that Modeling Has Given into Optimal Design and Operation of Traditional Packed-Beds 336
24.3 A model of the Zymotis Packed-Bed Bioreactor 341
 24.3.1 The Model .. 341
 24.3.2 Insights into Optimal Design and Operation of Zymotis Packed-Beds ... 342
24.4 Conclusions on Packed-Bed Bioreactors .. 347
Further Reading ... 347

25 A Model of an Intermittently-Mixed Forcefully-Aerated Bioreactor 349
 David A. Mitchell, Oscar F. von Meien, Luiz F.L. Luz Jr, and Nadia Krieger
 25.1 Introduction .. 349
 25.2 Synopsis of the Model ... 349
 25.3 Insights the Model Gives into Operation of Intermittently-Mixed Bioreactors ... 353
 25.3.1 Predictions about Operation at Laboratory Scale 353
 25.3.2 Investigation of the Design and Operation of Intermittently-Mixed Forcefully-Aerated Bioreactors at Large Scale 357
 25.4 Conclusions on Intermittently-Mixed Forcefully-Aerated Bioreactors .. 360
Further Reading ... 362

26 Instrumentation for Monitoring SSF Bioreactors 363
 Mario Fernández and J. Ricardo Pérez-Correa
 26.1 Why Is It Important to Monitor SSF Bioreactors? 363
 26.2 Which Variables Would We Like to Measure? 363
 26.3 Available Instrumentation for On-line Measurements 365
 26.4 Data Filtering .. 369
 26.5 How to Measure the Other Variables? 371
Further Reading ... 374

27 Fundamentals of Process Control ... 375
 J. Ricardo Pérez-Correa and Mario Fernández
 27.1 Main Ideas Underlying Process Control 375
 27.1.1 Feedback ... 375
 27.1.2 Control Loop .. 376
 27.1.3 Computer Control Loop .. 376
 27.2 Conventional Control Algorithms ... 377
 27.2.1 On/Off Control .. 377
 27.2.2 PID Control ... 380
 27.2.3 Model Predictive Control .. 385
Further Reading ... 386
28 Application of Automatic Control Strategies to SSF Bioreactors387
J. Ricardo Pérez-Correa, Mario Fernández, Oscar F. von Meien,
Luiz F.L. Luz Jr, and David A. Mitchell

28.1 Why Do We Need Automatic Control in SSF Bioreactors?387
28.2 How to Control SSF Bioreactors? .. 388
28.3 Case Studies of Control in SSF Bioreactors 389
 28.3.1 Control of the Bioreactors at PUC Chile 390
 28.3.2 Model-Based Evaluation of Control Strategies 395
28.4 Future Challenges in the Control of SSF Bioreactors 400
Further Reading .. 401

29 Design of the Air Preparation System for SSF Bioreactors 403
Oscar F. von Meien, Luiz F.L. Luz Jr, J. Ricardo Pérez-Correa, and
David A. Mitchell

29.1 Introduction .. 403
29.2 An Overview of the Options Available 404
29.3 Blower/Compressor Selection and Flow Rate Control 407
29.4 Piping and Connections ... 408
29.5 Air Sterilization .. 408
29.6 Humidification Columns ... 409
29.7 Case Study: An Air Preparation System for a Pilot-Scale Bioreactor ... 410
Further Reading .. 412

30 Future Prospects for SSF Bioreactors ... 413
David A. Mitchell, Marin Berović, and Nadia Krieger

30.1 The Increasing Importance of SSF ... 413
30.2 Present State and Future Prospects .. 414

References .. 417

Appendix: Guide to the Bioreactor Programs .. 429
A.1 Disclaimer ... 429
A.2 General Information and Advice ... 429
A.3 Use of the Well-Mixed Bioreactor Model 431
A.4 Use of the Rotating-Drum Bioreactor Model 433
A.5 Use of the Traditional Packed-Bed Bioreactor Model 435
A.6 Use of the Zymotis Packed-Bed Bioreactor Model 436
A.7 Use of the Model of an Intermittently-Mixed Forcefully-Aerated
 Bioreactor ... 439

Index .. 443
Solid-State Fermentation Bioreactors
Fundamentals of Design and Operation
Mitchell, D.A.; Krieger, N.; Berovic, M. (Eds.)
2006, XXXVIII, 448 p., Hardcover
ISBN: 978-3-540-31285-7