Contents

Part A Introduction

1 **Introduction** .. 3
 J. Nösberger and S.P. Long

1.1 Managed Ecosystems and the Future Supply of Raw Materials .. 3
1.2 Why are $[\text{CO}_2]$ Enrichment Studies with Managed Ecosystems Important? .. 4
1.3 Free-Air $[\text{CO}_2]$ Enrichment .. 6
1.4 Spatial and Temporal Scale .. 7
1.5 Elevated $[\text{CO}_2]$ Affects Plant Growth and Ecosystems via a Multitude of Mechanisms .. 9
1.6 Conclusions .. 12

References .. 12

2 **FACE Technology: Past, Present, and Future** .. 15
 G.R. Hendrey and F. Miglietta

2.1 Introduction .. 15
2.2 Need for Controlled Experiments in the Field:
 Historical Perspective .. 17
2.3 Advantages of FACE .. 21
2.4 Problems and Limitations .. 21
2.4.1 CO_2 as a Step Treatment .. 22
2.4.2 High-Frequency Variation in $[\text{CO}_2]$.. 23
2.4.3 Limited Plot Size .. 24
2.4.4 Blower Effect .. 24
2.5 FACE Systems Engineering 25
 2.5.1 Historical Perspective 25
 2.5.2 BNL FACE Design 26
 2.5.3 CNR FACE Design 28
 2.5.4 Web-FACE ... 29
2.6 Multiple Variable Experiments 30
2.7 Future Perspectives .. 32
 2.7.1 The GradFACE Design 32
 2.7.2 HotFACE .. 34
2.8 Conclusions .. 37
References ... 39

Part B Case Studies

3 The Effects of Free-Air [CO₂] Enrichment of Cotton, Wheat, and Sorghum 47
 B.A. KIMBALL

 3.1 Introduction .. 47
 3.2 Description of the FACE System and Experimental Methodology 47
 3.3 Cotton .. 51
 3.3.1 Resource Availability 51
 3.3.2 Resource Acquisition and Transformation 52
 3.3.2.1 CO₂ and Carbon 52
 3.3.2.2 Light ... 58
 3.3.2.3 Water ... 58
 3.3.2.4 Nutrients ... 59
 3.3.3 Consequences for Management 59
 3.3.4 Consequences for Plant Breeding 60
 3.4 Wheat .. 60
 3.4.1 Resource Availability 60
 3.4.2 Resource Acquisition and Transformation 62
 3.4.2.1 CO₂ and Carbon 62
 3.4.2.2 Water .. 62
 3.4.2.3 Nutrients .. 63
 3.4.3 Consequences for Management 63
 3.4.4 Consequences for Plant Breeding 64
 3.5 Sorghum .. 64
5 Paddy Rice Responses to Free-Air [CO₂] Enrichment 87
K. Kobayashi, M. Okada, H.Y. Kim, M. Lieffering,
S. Miura, and T. Hasegawa

5.1 Introduction to Rice . 87
5.2 The Rice FACE Experiment: Phase 1 88
5.2.1 Site Description, Plot Layout and Crop Management . . . 88
5.2.2 Experimental Treatments 89
5.2.2.1 [CO₂] Enrichment . 89
5.2.2.2 N Fertilizer Application . 89
5.3 Effects of e[CO₂] on Paddy Rice 89
5.3.1 Effects on Resource Acquisition 89
5.3.1.1 Phenology . 89
5.3.1.2 Light Capture by Leaves . 90
5.3.1.3 Leaf Photosynthesis . 91
5.3.1.4 Root Development . 92
5.3.1.5 Tillering . 93
5.3.1.6 Accumulation of Plant Biomass and Nitrogen 93
5.3.2 Effects on Resource Transformation 95
5.3.2.1 Distribution of Plant Biomass and N
During Reproductive Growth 95
5.3.2.2 Grain Yield, Yield Components and Harvest Index 96
5.3.2.3 Grain Quality . 97
5.3.3 Synthesis of Rice Plant Responses to e[CO₂]
and N Fertilization . 98
5.4 Implications for Rice Production in e[CO₂] 100
5.4.1 Prediction of Global Change Impacts 100
5.4.2 Adaptations to e[CO₂] . 101
5.5 Conclusions . 102
References . 103

6 Growth and Quality Responses of Potato to Elevated [CO₂] . 105
M. Bindi, F. Miglietta, F. Vaccari, E. Magliulo,
and A. Giuntoli

6.1 Introduction . 105
6.2 Site Description . 106
6.2.1 Physical: Location, Size, Elevation, Layout of Experiment
and Blocking . 106
6.2.2 Soil Types, Tillage Practices, Fertilisation,
Crop Samplings and Measurements 106
10 Responses to Elevated [CO₂] of a Short Rotation, Multispecies Poplar Plantation: the POPFACE/EUROFACE Experiment

10.1 Introduction ... 173
10.1.1 Research Leading to This Experiment 173
10.1.2 Focus on Agroforestry Plantations 173
10.1.3 Objectives and Hypotheses 174
10.2. Site Description .. 174
10.2.1 Location and Layout of Experiment 174
10.2.2 Soil Types, Fertilisation, Irrigation 176
10.2.3 Meteorological Description 176
10.2.4 Stand History and Description 177
10.3. Experimental Treatment ... 177
10.3.1 Atmospheric [CO₂] Enrichment 177
10.3.2 Nitrogen Fertilisation .. 178
10.3.3 Species Comparison .. 178
10.3.4 Interactions .. 178
10.4 Resource Acquisition .. 179
10.4.1 Photosynthesis and Respiration 179
10.4.2 Stomatal Conductance ... 181
10.4.3 Nitrogen and Other Nutrient Concentrations and Dynamics 181
10.4.4 LAI and Light Interception 182
10.4.5 Canopy Architecture .. 184
10.4.6 Root Development and Mycorrhizal Colonization 184
10.5 Resource Transformation ... 185
10.5.1 Aboveground Productivity 185
10.5.2 Belowground Productivity 185
10.5.3 Soil Carbon: Litter Production, Soil Respiration and C-Pools 188
10.5.4 Wood Quality and Biochemical Composition of Wood and Roots 189
10.5.5 Pest and Disease Susceptibility 189
10.6 Consequences and Implications 190
10.6.1 Forest Management .. 190
10.6.2 Global Carbon Cycle .. 190
10.6.3 Other Ecosystem Goods and Services 191
10.7 Conclusions .. 192

References .. 193
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>231</td>
</tr>
<tr>
<td>13.2 Site Description</td>
<td>232</td>
</tr>
<tr>
<td>13.2.1 Physical</td>
<td>232</td>
</tr>
<tr>
<td>13.2.2 Soil Types</td>
<td>233</td>
</tr>
<tr>
<td>13.2.3 Meteorological Description</td>
<td>233</td>
</tr>
<tr>
<td>13.2.4 Stand Description</td>
<td>233</td>
</tr>
<tr>
<td>13.3 Experimental Treatments</td>
<td>234</td>
</tr>
<tr>
<td>13.4 Resource Acquisition</td>
<td>234</td>
</tr>
<tr>
<td>13.4.1 CO₂ Effects on Physiological Functions and Metabolites</td>
<td>234</td>
</tr>
<tr>
<td>13.4.1.1 Carbon</td>
<td>234</td>
</tr>
<tr>
<td>13.4.1.2 Water</td>
<td>236</td>
</tr>
<tr>
<td>13.4.1.3 Nitrogen</td>
<td>237</td>
</tr>
<tr>
<td>13.4.2 CO₂ Effects on Tree and Stand Structure</td>
<td>237</td>
</tr>
<tr>
<td>13.4.2.1 Leaf Area Index</td>
<td>237</td>
</tr>
<tr>
<td>13.4.2.2 Root System Structure</td>
<td>237</td>
</tr>
<tr>
<td>13.4.3 Structure–Function Integration</td>
<td>238</td>
</tr>
<tr>
<td>13.4.3.1 Carbon Uptake</td>
<td>238</td>
</tr>
<tr>
<td>13.4.3.2 Stand Water Use</td>
<td>238</td>
</tr>
<tr>
<td>13.4.3.3 Nitrogen Cycling</td>
<td>240</td>
</tr>
<tr>
<td>13.5 Resource Transformation</td>
<td>240</td>
</tr>
<tr>
<td>13.5.1 Productivity</td>
<td>240</td>
</tr>
<tr>
<td>13.5.1.1 Aboveground Production</td>
<td>240</td>
</tr>
<tr>
<td>13.5.1.2 Belowground Production</td>
<td>241</td>
</tr>
<tr>
<td>13.5.1.3 Ecosystem Productivity</td>
<td>241</td>
</tr>
<tr>
<td>13.5.2 Soil C</td>
<td>243</td>
</tr>
<tr>
<td>13.5.2.1 Carbon Input and Decomposition</td>
<td>243</td>
</tr>
<tr>
<td>13.5.2.2 Carbon Pools</td>
<td>243</td>
</tr>
<tr>
<td>13.5.2.3 Microbial Activity and Nutrient Cycling</td>
<td>244</td>
</tr>
<tr>
<td>13.5.3 Products</td>
<td>245</td>
</tr>
<tr>
<td>13.5.4 Biotic Interactions</td>
<td>245</td>
</tr>
<tr>
<td>13.6 Consequences and Implications</td>
<td>245</td>
</tr>
<tr>
<td>13.6.1 Forest Management</td>
<td>245</td>
</tr>
<tr>
<td>13.6.2 Global C Cycle</td>
<td>246</td>
</tr>
<tr>
<td>13.7 Conclusions</td>
<td>248</td>
</tr>
<tr>
<td>References</td>
<td>249</td>
</tr>
</tbody>
</table>
Part C Processes

14 Long-Term Responses of Photosynthesis and Stomata to Elevated [CO₂] in Managed Systems 253

14.1 Introduction ... 253
14.1.1 The Theory of Responses of Photosynthesis and Stomatal Conductance to Elevated [CO₂] 253
14.1.2 Chamber Acclimation and Down-Regulation of Photosynthesis ... 256
14.1.3 A Purpose to Down-Regulation of Photosynthesis and Stomatal Conductance? 257
14.1.4 Expectations of FACE ... 258
14.2 Why FACE for Photosynthesis and Conductance? 258
14.3 Which FACE? .. 260
14.4 Have Findings From FACE Altered Perspectives? 262
14.4.1 Photosynthesis is Increased Less and Stomatal Conductance Decreased More in FACE 262
14.4.2 Photosynthesis is Stimulated Less at the Beginning and End of the Day 262
14.4.3 Stimulation of Photosynthesis is Sustained and Little Affected by Nitrogen Supply 263
14.4.4 In Vivo Rubisco Activity is Decreased More than Capacity for RubP Regeneration 265
14.5 Conclusion .. 266
References .. 267

15 Carbon Partitioning and Respiration – Their Control and Role in Plants at High CO₂ 271

15.1 Introduction ... 271
15.2 A Brief Background to Partitioning of Dry Matter and Carbon ... 272
15.3 Export From Source Leaves .. 273
15.4 Whole-Plant Partitioning ... 275
15.4.1 Growth and Development 277
15.5 Within Root Partitioning ... 278
15.5.1 Roots are a Sink for Photosynthetically Fixed C ... 279
15.5.2 Root Growth .. 280
15.5.3 Exudation, Mucilage, and Cell Death 280
15.5.4 Root Death and Turnover 281
15.5.5 Elevated CO$_2$ and FACE Experiments 281
15.6 Respiration ... 282
15.6.1 Direct and Indirect Effects of CO$_2$ 282
15.6.2 Above-Ground Respiration and FACE 284
15.6.3 Roots in Soil .. 284
15.6.4 Below-Ground Respiration and FACE 285
15.7 Conclusion ... 286
References .. 287

16 The Response of Foliar Carbohydrates to Elevated [CO$_2$] 293

A. Rogers and E.A. Ainsworth

16.1 Introduction .. 293
16.1.1 Why is it Important to Understand the Response of Foliar Carbohydrates to Growth at e[CO$_2$]? 293
16.1.2 What Were the Known Effects of e[CO$_2$] on Foliar Carbohydrates Before FACE? 294
16.2 Do Carbohydrates Accumulate in the Leaves of Plants Grown in the Field Using FACE Technology? 295
16.3 Manipulations of Source–Sink Balance 298
16.4 The Effect of Nitrogen Supply on Sink Capacity 301
16.5 What Are the Signs of a Limited Sink Capacity? 303
16.6 Conclusion ... 305
References .. 305

17 Evapotranspiration, Canopy Temperature, and Plant Water Relations ... 311

B.A. Kimball and C.J. Bernacchi

17.1 Introduction .. 311
17.2 Canopy Temperature .. 311
17.3 Evapotranspiration .. 314
17.3.1 Changes in ET with e[CO$_2$] 314
17.3.2 Correlations of ET with Canopy Temperature and Shoot Biomass Changes ... 315
17.3.3 Applicability of Plot-Scale ET Measurements to Regional Scales .. 317
17.3.4 Combined Physiological and Global-Warming Effects of e[CO$_2$] on ET ... 318
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4 Soil Water Content</td>
<td>319</td>
</tr>
<tr>
<td>17.5 Plant Water Use Efficiency</td>
<td>320</td>
</tr>
<tr>
<td>17.6 Plant Water Relations</td>
<td>320</td>
</tr>
<tr>
<td>17.7 Conclusions</td>
<td>321</td>
</tr>
<tr>
<td>References</td>
<td>322</td>
</tr>
<tr>
<td>U.A. Hartwig and M.J. Sadowsky</td>
<td></td>
</tr>
<tr>
<td>18.1 Introduction</td>
<td>325</td>
</tr>
<tr>
<td>18.2 Elevated Atmospheric [CO₂] Appears Not to Affect the Activity of Symbiotic N₂ Fixation</td>
<td>326</td>
</tr>
<tr>
<td>18.3 The Initial Response of Symbiotic N₂ Fixation to Elevated Atmospheric [CO₂] Under Field Conditions is Different From That Under Continuous Nutrient Supply</td>
<td>326</td>
</tr>
<tr>
<td>18.4 What Are the Possible Reasons For the Differential Responses of Symbiotic N₂ Fixation to Elevated Atmospheric [CO₂] in Laboratory and Field Experiments?</td>
<td>328</td>
</tr>
<tr>
<td>18.5 The Time Component, While Often Suggested, Is Now Evident in the 10-Year Swiss FACE Experiment</td>
<td>330</td>
</tr>
<tr>
<td>18.6 The Significance of Symbiotic N₂ Fixation Under Elevated Atmospheric [CO₂] in Terrestrial Ecosystems: An Attempt to Reach a General Conclusion</td>
<td>331</td>
</tr>
<tr>
<td>18.7 Conclusion</td>
<td>332</td>
</tr>
<tr>
<td>References</td>
<td>333</td>
</tr>
<tr>
<td>19 Effects of Elevated [CO₂] and N Fertilization on Interspecific Interactions in Temperate Grassland Model Ecosystems</td>
<td>337</td>
</tr>
<tr>
<td>A. Lüscher and U. Aeschlimann</td>
<td></td>
</tr>
<tr>
<td>19.1 Introduction</td>
<td>337</td>
</tr>
<tr>
<td>19.2 Materials and Methods</td>
<td>338</td>
</tr>
<tr>
<td>19.2.1 Experimental Site</td>
<td>338</td>
</tr>
<tr>
<td>19.2.2 Experimental Treatments</td>
<td>339</td>
</tr>
<tr>
<td>19.2.3 Data Collection and Statistical Analysis</td>
<td>340</td>
</tr>
<tr>
<td>19.3 Results</td>
<td>340</td>
</tr>
<tr>
<td>19.3.1 Proportion of T. repens in Mixture</td>
<td>340</td>
</tr>
<tr>
<td>19.3.2 Biomass and Nitrogen Yield</td>
<td>340</td>
</tr>
</tbody>
</table>
19.3.3 Relative Yield of Biomass and Nitrogen

19.4 Discussion

19.4.1 Interspecific Differences in the Response to e[CO$_2$]

19.4.2 Competitive Ability Depended Strongly on the Species,

19.4.3 Resource Complementarity Strongly Depended

19.5 Conclusions

References

20 The Potential of Genomics and Genetics to Understand
Plant Response to Elevated Atmospheric [CO$_2$]

20.1 Introduction

20.1.1 What We Know and What We Need to Know

20.1.2 Can an Integrative (Systems) Biology Approach be Useful?

20.2 Genomics in Field-Grown Plants

20.2.1 Transcript Profiling

20.2.2 Use of Expression Arrays in FACE Experiments

20.2.3 QTL Discovery for Responsive Traits

20.2.4 Association Genetics

20.3 Proteomics and Metabolomics in Field-Grown Plants

20.4 The Importance of Experimental Design

20.5 The Future

20.6 Conclusions

References

21 The Impact of Elevated Atmospheric [CO$_2$] on Soil C
and N Dynamics: A Meta-Analysis

21.1 Introduction

21.2 Materials and Methods
21 Database Compilation

21.2 Database Compilation

- **21.2.1 Database Compilation**

- **21.2.2 Statistical Analyses**

21.3 Results

- **21.3.1 Soil C and N Contents**

21.4 Discussion

- **21.4.1 Soil C Contents**

21.5 Future Research Needs

21.6 Conclusions

References

22 The Influence of Elevated [CO₂] on Diversity, Activity and Biogeochemical Functions of Rhizosphere and Soil Bacterial Communities

S. Tarnawski and M. Aragno

22.1 Introduction

22.2 Interactions Between Soil Microbiota and Rhizosphere Conditions

22.3 Effect of e[CO₂] on Rhizodeposition

22.4 Responses of Microbial Biomass, Cell Number and Activity

22.5 Effects on Soil Structure and Enzyme Activities

22.6 Responses of Bacterial Community Structure to e[CO₂]

22.7 Elevated [CO₂] and Nitrogen Cycle in Soil and Rhizosphere

22.7.1 N-pools, Uptake and Mineralization

22.7.2 N₂ Fixation

22.7.3 Nitrification

22.7.4 Denitrification

22.8 Plant-Growth Promoting Rhizobacteria

22.9 Discussion and Perspectives

22.10 Conclusions

References

23 Increases in Atmospheric [CO₂] and the Soil Food Web

D.A. Phillips, T.C. Fox, H. Ferris, and J.C. Moore

23.1 Introduction

23.1.1 Soil Food Webs: The Concept
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.2</td>
<td>Effects of Elevated [CO₂] on Soil Organic Matter and the Food Web</td>
<td>415</td>
</tr>
<tr>
<td>23.3</td>
<td>Root Exudation and the Effects of Elevated [CO₂]</td>
<td>417</td>
</tr>
<tr>
<td>23.4</td>
<td>Linking Plants to Soil Food Webs under Changing [CO₂]</td>
<td>419</td>
</tr>
<tr>
<td>23.5</td>
<td>Conclusions</td>
<td>422</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>423</td>
</tr>
</tbody>
</table>

Part D Perspectives

24 FACE Value: Perspectives on the Future of Free-Air CO₂ Enrichment Studies

A. Rogers, E.A. Ainsworth, and C. Kammann

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1</td>
<td>The Value of FACE Experiments</td>
<td>431</td>
</tr>
<tr>
<td>24.2</td>
<td>What Have We Learnt From FACE?</td>
<td>432</td>
</tr>
<tr>
<td>24.2.1</td>
<td>Photosynthesis and Aboveground Productivity</td>
<td>432</td>
</tr>
<tr>
<td>24.2.2</td>
<td>Photosynthetic Acclimation</td>
<td>433</td>
</tr>
<tr>
<td>24.2.2.1</td>
<td>Response of Different Functional Groups</td>
<td>434</td>
</tr>
<tr>
<td>24.2.2.2</td>
<td>Belowground Responses</td>
<td>435</td>
</tr>
<tr>
<td>24.3</td>
<td>What Is Missing From Current FACE Research and What Are the Gaps in Understanding?</td>
<td>437</td>
</tr>
<tr>
<td>24.3.1</td>
<td>Additional Treatments</td>
<td>437</td>
</tr>
<tr>
<td>24.3.2</td>
<td>Future Challenges</td>
<td>438</td>
</tr>
<tr>
<td>24.3.3</td>
<td>What Is the Fate of C Partitioned Belowground?</td>
<td>439</td>
</tr>
<tr>
<td>24.3.3.1</td>
<td>N Cycling</td>
<td>440</td>
</tr>
<tr>
<td>24.3.3.2</td>
<td>Soil Faunal Food Webs and Soil Structure</td>
<td>440</td>
</tr>
<tr>
<td>24.3.3.3</td>
<td>Trace Gases</td>
<td>440</td>
</tr>
<tr>
<td>24.4</td>
<td>Technologies for Future FACE Science</td>
<td>441</td>
</tr>
<tr>
<td>24.4.1</td>
<td>The Use of Stable Isotopes</td>
<td>441</td>
</tr>
<tr>
<td>24.4.2</td>
<td>Genomic Technologies and Tools in FACE</td>
<td>442</td>
</tr>
<tr>
<td>24.5</td>
<td>A Potential Problem for Long-Running FACE Experiments?</td>
<td>443</td>
</tr>
<tr>
<td>24.6</td>
<td>Conclusion</td>
<td>444</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>445</td>
</tr>
</tbody>
</table>

Subject Index

Subject Index | 451
Managed Ecosystems and CO2
Case Studies, Processes, and Perspectives
Nösberger, J.; Long, S.P.; Norby, R.J.; Stitt, M.; Hendrey, G.R.; Blum, H. (Eds.)
2006, XL, 459 p., Hardcover
ISBN: 978-3-540-31236-9