Contents

Part I Introduction to Graph Transformation Systems

1 General Introduction .. 5
 1.1 General Overview of Graph Grammars and Graph
 Transformation ... 5
 1.1.1 What Is Graph Transformation? 6
 1.1.2 Aims and Paradigms of Graph Transformation 6
 1.1.3 Overview of Various Approaches 9
 1.2 The Main Ideas of the Algebraic Graph Transformation
 Approach .. 10
 1.2.1 The DPO Approach 11
 1.2.2 The Algebraic Roots 12
 1.2.3 From the DPO to the SPO Approach 13
 1.2.4 From Graphs to High-Level Structures 14
 1.3 The Chapters of This Book and the Main Results 15
 1.3.1 Part I: Introduction to Graph Transformation Systems . 15
 1.3.2 Part II: Adhesive HLR Categories and Systems 15
 1.3.3 Part III: Typed Attributed Graph Transformation
 Systems ... 16
 1.3.4 Part IV: Case Study and Tool Support 17
 1.3.5 Appendices ... 17
 1.3.6 Hints for Reading This Book 17
 1.4 Bibliographic Notes and Further Topics 17
 1.4.1 Concepts of Graph Grammars and Graph
 Transformation Systems 17
 1.4.2 Application Areas of Graph Transformation Systems .. 19
 1.4.3 Languages and Tools for Graph Transformation Systems 19
 1.4.4 Future Work 20
X Contents

2 Graphs, Typed Graphs, and the Gluing Construction 21
 2.1 Graphs and Typed Graphs 21
 2.2 Introduction to Categories 25
 2.3 Pushouts as a Gluing Construction 29
 2.4 Pullbacks as the Dual Construction of Pushouts 33

3 Graph Transformation Systems 37
 3.1 Basic Definitions for GT Systems 37
 3.2 Construction of Graph Transformations 43
 3.3 Local Church–Rosser and Parallelism Theorems for GT Systems ... 47
 3.4 Overview of Some Other Main Results for GT Systems 53
 3.4.1 Concurrency Theorem 54
 3.4.2 Embedding and Extension Theorems 56
 3.4.3 Confluence, Local Confluence, Termination, and Critical Pairs .. 59
 3.4.4 Functional Behavior of GT Systems and Termination Analysis .. 62
 3.5 Graph Constraints and Application Conditions 64

Part II Adhesive High-Level Replacement Categories and Systems

4 Adhesive High-Level Replacement Categories 77
 4.1 Van Kampen Squares and Adhesive Categories 77
 4.2 Adhesive HLR Categories 86
 4.3 HLR Properties of Adhesive HLR Categories 96

5 Adhesive High-Level Replacement Systems 101
 5.1 Basic Concepts of Adhesive HLR Systems 101
 5.2 Instantiation of Adhesive HLR Systems 105
 5.2.1 Graph and Typed Graph Transformation Systems 106
 5.2.2 Hypergraph Transformation Systems 106
 5.2.3 Petri Net Transformation Systems 107
 5.2.4 Algebraic Specification Transformation Systems 108
 5.2.5 Typed Attributed Graph Transformation Systems 108
 5.3 The Local Church–Rosser and Parallelism Theorems 109
 5.4 Concurrency Theorem and Pair Factorization 117

6 Embedding and Local Confluence 125
 6.1 Initial Pushouts and the Gluing Condition 125
 6.2 Embedding and Extension Theorems 130
 6.3 Critical Pairs .. 140
 6.4 Local Confluence Theorem 144
7 Constraints and Application Conditions 151
7.1 Definition of Constraints and Application Conditions 152
7.2 Construction of Application Conditions from Constraints 156
7.3 Construction of Left from Right Application Conditions 160
7.4 Guaranteeing and Preservation of Constraints 164

Part III Typed Attributed Graph Transformation Systems

8 Typed Attributed Graphs .. 171
8.1 Attributed Graphs and Typing 172
8.2 Pushouts as a Gluing Construction of Attributed Graphs 177
8.3 Pullbacks of Attributed Graphs 178

9 Typed Attributed Graph Transformation Systems 181
9.1 Basic Concepts for Typed AGT Systems 181
9.2 Construction of Typed Attributed Graph Transformations ... 188
9.3 Local Church–Rosser and Parallelism Theorem for Typed AGT Systems ... 190
9.4 Concurrency Theorem and Pair Factorization for Typed AGT Systems ... 194
9.4.1 Pair Factorizations .. 194
9.4.2 Concurrency Theorem .. 201

10 Embedding and Local Confluence for Typed AGT Systems 207
10.1 Embedding and Extension Theorems for Typed AGT Systems 207
10.2 Critical Pairs for Typed AGT Systems 215
10.3 Local Confluence Theorem for Typed AGT Systems 218

11 Adhesive HLR Categories for Typed Attributed Graphs ... 221
11.1 Attributed Graph Structure Signatures and Typed Attributed Graphs ... 222
11.2 Definition of Concrete Adhesive HLR Categories 225
11.3 Verification of the Main Results for Typed AGT Systems ... 232

12 Constraints, Application Conditions and Termination for TAGT Systems ... 237
12.1 Constraints and Application Conditions for Typed AGT Systems ... 237
12.2 Equivalence of Constraints and Application Conditions 242
12.3 Termination Criteria for Layered Typed Attributed Graph Grammars ... 249
13 Typed Attributed Graph Transformation with Inheritance. 259
13.1 Attributed Type Graphs with Inheritance 260
13.2 Attributed Clan Morphisms 265
13.3 Productions and Attributed Graph Transformation with
Inheritance .. 271
13.4 Equivalence of Concepts with and without Inheritance 278

Part IV Case Study on Model Transformation, and
Tool Support by AGG

14 Case Study on Model Transformation 287
14.1 Model Transformation by Typed Attributed Graph
Transformation ... 287
14.2 Model Transformation from Statecharts to Petri Nets 288
14.2.1 Source Modeling Language: Simple Version of UML
Statecharts .. 289
14.2.2 Target Modeling Language: Petri Nets 290
14.2.3 Model Transformation 293
14.2.4 Termination Analysis of the Model Transformation ... 301
14.3 Further Case Studies 303
14.3.1 From the General Resource Model to Petri Nets 303
14.3.2 From Process Interaction Diagrams to Timed Petri Nets304
14.4 Conclusion ... 304

15 Implementation of Typed Attributed Graph
Transformation by AGG 305
15.1 Language Concepts of AGG 305
15.1.1 Graphs ... 306
15.1.2 Typing Facilities 306
15.1.3 Node and Edge Attributes 307
15.1.4 Rules and Matches 308
15.1.5 Graph Transformations 310
15.1.6 Graph Grammars 312
15.2 Analysis Techniques Implemented in AGG 312
15.2.1 Graph Constraints 312
15.2.2 Critical Pair Analysis 313
15.2.3 Graph Parsing 317
15.2.4 Termination .. 318
15.3 Tool Environment of AGG 318
15.3.1 Visual Environment 320
15.3.2 Graph Transformation Engine 321
15.3.3 Tool Integration 322
15.4 Conclusion ... 322
Fundamentals of Algebraic Graph Transformation
Ehrig, H.; Ehrig, K.; Prange, U.; Taentzer, G.
2006, XIII, 390 p., Hardcover
ISBN: 978-3-540-31187-4