Contents

Part I Redox Systems via d,π-Conjugation

1 Conjugated Complexes with Quinonediimine Derivatives
Toshiyuki Moriuchi, Toshikazu Hirao
1.1 Introduction
1.2 Architecturally Controlled Formation
of Conjugated Complexes with 1,4-Benzquinonediimines
1.3 Redox-Switching Properties of Conjugated Complexes
with 1,4-Benzquinonediimines
1.4 Conclusion
1.5 References

2 Realizing the Ultimate Amplification
in Conducting Polymer Sensors:
Isolated Nanoscopic Pathways
Timothy M. Swager
2.1 Dimensionality in Molecular-Wire Sensors
2.2 Analyte-Triggered Barrier Creation in Conducting Polymers
2.3 Isolated Nanoscopic Pathways
2.4 Langmuir–Blodgett Approaches to Nanofibrils
2.5 Molecular Scaffolds for the Isolation of Molecular Wires
2.6 Summary and Future Prospects
2.7 References

3 Metal-Containing π-Conjugated Materials
Michael O. Wolf
3.1 Introduction
3.1.1 π-Conjugated Materials
3.1.2 Nanomaterials
3.2 Metal-Complex-Containing Conjugated Materials
3.2.1 Preparation
3.2.2 Properties
3.3 Metal-Nanoparticle-Containing Conjugated Materials
3.3.1 Preparation
4 Redox Active Architectures and Carbon-Rich Ruthenium Complexes as Models for Molecular Wires
Stéphane Rigaut, Daniel Touchard, Pierre H. Dixneuf 55

3.3.2 Properties .. 51
3.4 Applications .. 52
3.5 Conclusions ... 53
3.6 References .. 53

4 Redox Active Architectures and Carbon-Rich Ruthenium Complexes as Models for Molecular Wires
Stéphane Rigaut, Daniel Touchard, Pierre H. Dixneuf 55

4.1 Introduction ... 56
4.2 Ruthenium Allenylidene and Acetylide Building Blocks:
Basic Properties ... 57
4.2.1 Synthetic Routes 57
4.2.2 Redox Properties 60
4.2.2.1 Oxidation of Ruthenium Metal Acetylides:
Stable RuII/RuIII Systems and a New Route
to Allenylidene Metal Complexes 60
4.2.2.2 Reduction of Metal Allenylidenes:
Access to Stable “Organic” Radicals and a Route to Acetylides . 61
4.3 Bimetallic Complexes from the Ru(dppe)2 System 63
4.3.1 A Binuclear Bis-Acetylide Ruthenium Complex 63
4.3.2 Bis-Allenylidene Bridges Linking Two Ruthenium Complexes . 64
4.3.3 C7 Bridged Binuclear Ruthenium Complexes 67
4.4 Connection of Two Carbon-Rich Chains
with the Ruthenium System 71
4.5 Trimetallic and Oligomeric Metal Complexes
with Carbon-Rich Bridges 74
4.6 Star Organometallic-Containing Multiple Identical Metal Sites . 77
4.7 Conclusion ... 79
4.8 References ... 79

5 Molecular Metal Wires Built from a Linear Metal Atom Chain
Supported by Oligopyridylamido Ligands
Chen-Yu Yeh, Chih-Chieh Wang, Chun-Hsien Chen,
Shie-Ming Peng ... 85

5.1 Introduction .. 86
5.2 Synthesis of Oligopyridylamine Ligands 87
5.3 Dimerization by Self-Complementary Hydrogen Bonding ... 90
5.4 Complexation of Oligopyridylamine Ligands 91
5.5 Mono- and Dinuculear Complexes 91
5.6 Structures of Linear Multinuclear Nickel Complexes 92
5.7 Structures of Linear Multinuclear Cobalt Complexes 98
5.8 Structures of Linear Multinuclear Chromium Complexes ... 100
5.9 Structures of Triruthenium and Trirhodium Complexes ... 103
5.10 Complexes of Modified Ligands 104
5.11 Electrochemical Properties of the Complexes 105
5.12 Scanning Tunneling Microscopy Studies 112
5.13 Summary .. 114
5.14 References .. 115

6 Multielectron Redox Catalysts
in Metal-Assembled Macromolecular Systems
Takane Imaoka, Kimihisa Yamamoto 119
6.1 Introduction .. 119
6.2 Multielectron Redox Systems 120
6.3 Multinuclear Complexes as Redox Catalysts 122
6.4 Macromolecule-Metal Complexes 123
6.5 Metal Ion Assembly on Dendritic Macromolecules 124
6.6 Conclusion .. 129
6.7 References .. 129

Part II Redox Systems via Coordination Control

7 Triruthenium Cluster Oligomers
that Show Multistep/Multielectron Redox Behavior
Tomohiko Hamaguchi, Tadashi Yamaguchi, Tasuku Ito 133
7.1 Introduction .. 133
7.2 Syntheses of Oligomers 1 and 2 135
7.3 Redox Behavior of 1 and 2 136
7.4 Conclusion .. 139
7.5 References .. 139

8 Molecular Architecture
of Redox-Active Multilayered Metal Complexes
Based on Surface Coordination Chemistry
Masa-aki Haga .. 141
8.1 Introduction .. 141
8.2 Fabrication of Multilayer Nanoarchitectures
by Surface Coordination Chemistry 142
8.2.1 Layer-by-Layer Assembly on Solid Surfaces 142
8.2.2 Molecular Design of Anchoring Groups
for Control of Molecular Orientation on Surfaces 143
8.2.3 Molecular Design of Redox-Active Metal Complex Units
for the Control of Energy Levels on Surfaces 146
8.3 Chemical Functions
of Redox-Active Multilayered Complexes on Surface 148
8.3.1 Electron Transfer Events in Multilayer Nanostructures 148
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.2</td>
<td>Combinatorial Approach to Electrochemical Molecular Devices in a Multilayer Nanostructure on Surfaces</td>
<td>149</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Surface DNA Trapping by Immobilized Metal Complexes with Intercalator Moiety Toward Nanowiring</td>
<td>151</td>
</tr>
<tr>
<td>8.4</td>
<td>Conclusion</td>
<td>153</td>
</tr>
<tr>
<td>8.5</td>
<td>References</td>
<td>153</td>
</tr>
</tbody>
</table>
| 9 | **Programmed Metal Arrays by Means of Designable Biological Macromolecules**

| | *Kentaro Tanaka, Tomoko Okada, Mitsuhiko Shionoya* | 155 |
| 9.1 | Introduction | 155 |
| 9.2 | DNA-Directed Metal Arrays | 156 |
| 9.2.1 | Metal-Mediated Base Pairing in DNA | 156 |
| 9.2.2 | Single-Site Incorporation of a Metal-Mediated Base Pair into DNA | 157 |
| 9.2.3 | Discrete Self-Assembled Metal Arrays in DNA | 159 |
| 9.3 | Peptide-Directed Metal Arrays | 161 |
| 9.3.1 | Design Concept | 161 |
| 9.3.2 | Heterogeneous Metal Arrays Using Cyclic Peptides | 162 |
| 9.3.3 | Metal Ion Selectivity in Supramolecular Complexation | 163 |
| 9.4 | Conclusion | 164 |
| 9.5 | References | 164 |
| 10 | **Metal-Incorporated Hosts for Cooperative and Responsive Recognition to External Stimulus**

| | *Tatsuya Nabeshima, Shigehisa Akine* | 167 |
| 10.1 | Introduction | 167 |
| 10.2 | Pseudomacrocycles for Cooperative Molecular Functional Systems | 168 |
| 10.3 | Oligo(N$_2$O$_2$-Chelate) Macrocycles | 172 |
| 10.3.1 | Design of Macroyclic Oligo(N$_2$O$_2$-Chelate) Ligands and Metallohosts | 172 |
| 10.3.2 | Synthesis and Structure of Tris(N$_2$O$_2$-Chelate) Macrocycles | 173 |
| 10.4 | Acyclic Oligo(N$_2$O$_2$-Chelate) Ligands | 174 |
| 10.4.1 | Design of Acyclic Oligo(N$_2$O$_2$-Chelate) Ligands | 174 |
| 10.4.2 | Complexes of a New N$_2$O$_2$-Chelate Ligand, Salamo | 175 |
| 10.4.3 | Synthesis, Structure, and Properties of Acyclic Oligo(N$_2$O$_2$-Chelate) Ligands | 176 |
| 10.5 | Conclusion | 177 |
| 10.6 | References | 177 |
11 Synthesis of Poly(binaphthol) via Controlled Oxidative Coupling
Shigeki Habaue, Bunpei Hatano ... 179
11.1 Introduction ... 179
11.2 Asymmetric Oxidative Coupling
with Dinuclear Metal Complexes .. 181
11.3 Oxidative Coupling Polymerization of Phenols 183
11.4 Oxidative Coupling Polymerization
of 2,3-Dihydroxynaphthalene .. 184
11.5 Conclusion .. 188
11.6 References .. 188

Part III Redox Systems via Molecular Chain Control

12 Nano Meccano
Yi Liu, Amar H. Flood, J. Fraser Stoddart 193
12.1 Introduction ... 194
12.2 Redox-Controllable Molecular Switches in Solution 196
12.2.1 Bistable [2]Catenanes 196
12.2.2 Bistable [2]Rotaxanes .. 197
12.2.3 Self-Complexing Molecular Switches 198
12.3 Application of Redox-Controllable Molecular Machines
in Electronic Devices .. 201
12.4 Application of Redox-Controllable Molecular Machines
in Mechanical Devices .. 204
12.4.1 Switching in Langmuir–Blodgett Film 205
12.4.2 Molecular Machines Functioning as Nanovalves 207
12.4.3 Artificial Molecular Muscles 208
12.5 Conclusions .. 211
12.6 References .. 212

13 Through-Space Control of Redox Reactions
Using Interlocked Structure of Rotaxanes
Nobuhiro Kihara, Toshikazu Takata 215
13.1 Introduction .. 215
13.2 Redox Behavior and Conformation
of Ferrocene-End-Capped Rotaxane 217
13.3 Reduction of Ketone by Rotaxane
Bearing a Dihydronicotinamide Group 225
13.4 Conclusion ... 230
13.5 References ... 231
16.5 Linear Antibody Supramolecules: Application for Novel Biosensing Method .. 285
16.5.1 Antiviologen Antibodies .. 286
16.5.2 Applications for Highly Sensitive Detection Method of Methyl Viologen by Supramolecular Complex Formation Between Antibodies and Divalent Antigens 287
16.6 Conclusions ... 289
16.7 References ... 290

Subject Index .. 293
Redox Systems Under Nano-Space Control
Hirao, T. (Ed.)
2006, XVIII, 292 p. 233 illus., Hardcover
ISBN: 978-3-540-29579-2