Contents

Part I Parallel Computing

1 Parallel Programming Models Applicable to Cluster Computing and Beyond
Ricky A. Kendall, Masha Sosonkina, William D. Gropp, Robert W. Numrich, Thomas Sterling .. 3
 1.1 Introduction .. 3
 1.2 Message-Passing Interface 7
 1.3 Shared-Memory Programming with OpenMP 20
 1.4 Distributed Shared-Memory Programming Models 36
 1.5 Future Programming Models 42
 1.6 Final Thoughts ... 49
References .. 50

2 Partitioning and Dynamic Load Balancing for the Numerical Solution of Partial Differential Equations
James D. Teresco, Karen D. Devine, Joseph E. Flaherty 55
 2.1 The Partitioning and Dynamic Load Balancing Problems 56
 2.2 Partitioning and Dynamic Load Balancing Taxonomy 60
 2.3 Algorithm Comparisons 69
 2.4 Software .. 71
 2.5 Current Challenges ... 74
References .. 81

3 Graphics Processor Units: New Prospects for Parallel Computing
Martin Rumpf, Robert Strzodka 89
 3.1 Introduction .. 89
 3.2 Theory ... 97
 3.3 Practice .. 103
 3.4 Prospects ... 118
 3.5 Appendix: Graphics Processor Units (GPUs) In-Depth 121
X

Contents

References .. 131

Part II Parallel Algorithms

4 Domain Decomposition Techniques
Luca Formaggia, Marzio Sala, Fausto Saleri .. 135
4.1 Introduction .. 135
4.2 The Schur Complement System 138
4.3 The Schur Complement System Used as a Preconditioner 146
4.4 The Schwarz Preconditioner 147
4.5 Applications .. 152
4.6 Conclusions .. 159
References .. 162

5 Parallel Geometric Multigrid
Frank Hülsemann, Markus Kowarschik, Marcus Mohr, Ulrich Rüde 165
5.1 Overview .. 165
5.2 Introduction to Multigrid 166
5.3 Elementary Parallel Multigrid 177
5.4 Parallel Multigrid for Unstructured Grid Applications 189
5.5 Single-Node Performance 193
5.6 Advanced Parallel Multigrid 195
5.7 Conclusions .. 204
References .. 205

6 Parallel Algebraic Multigrid Methods – High Performance Preconditioners
Ulrike Meier Yang .. 209
6.1 Introduction .. 209
6.2 Algebraic Multigrid - Concept and Description 210
6.3 Coarse Grid Selection .. 212
6.4 Interpolation ... 220
6.5 Smoothing .. 223
6.6 Numerical Results .. 225
6.7 Software Packages .. 230
6.8 Conclusions and Future Work 232
References .. 233

7 Parallel Mesh Generation
Nikos Chrisochoides ... 237
7.1 Introduction .. 237
7.2 Domain Decomposition Approaches 238
7.3 Parallel Mesh Generation Methods 240
7.4 Taxonomy .. 255
7.5 Implementation ... 255
7.6 Future Directions .. 258
References .. 259

Part III Parallel Software Tools

8 The Design and Implementation of hypre, a Library of Parallel High Performance Preconditioners
Robert D. Falgout, Jim E. Jones, Ulrike Meier Yang 267
 8.1 Introduction .. 267
 8.2 Conceptual Interfaces .. 268
 8.3 Object Model .. 270
 8.4 The Structured-Grid Interface (Struct) 272
 8.5 The Semi-Structured-Grid Interface (semiStruct) 274
 8.6 The Finite Element Interface (FEI) 280
 8.7 The Linear-Algebraic Interface (IJ) 281
 8.8 Implementation .. 282
 8.9 Preconditioners and Solvers 289
 8.10 Additional Information ... 291
 8.11 Conclusions and Future Work 291
References .. 292

9 Parallelizing PDE Solvers Using the Python Programming Language
Xing Cai, Hans Petter Langtangen .. 295
 9.1 Introduction .. 295
 9.2 High-Performance Serial Computing in Python 296
 9.3 Parallelizing Serial PDE Solvers 299
 9.4 Python Software for Parallelization 307
 9.5 Test Cases and Numerical Experiments 313
 9.6 Summary .. 323
References .. 324

10 Parallel PDE-Based Simulations Using the Common Component Architecture
Lois Curfman McInnes, Benjamin A. Allan, Robert Armstrong, Steven J. Benson, David E. Bernholdt, Tamara L. Duhlgren, Lori Freitag Diachin, Manojkumar Krishnan, James A. Kohl, J. Walter Larson, Sophia Lefantzi, Jarek Nieplocha, Boyana Norris, Steven G. Parker, Jaideep Ray, Shujia Zhou . 327
 10.1 Introduction .. 328
 10.2 Motivating Parallel PDE-Based Simulations 330
 10.3 High-Performance Components 334
 10.4 Reusable Scientific Components 344
 10.5 Componentization Strategies 355
 10.6 Case Studies: Tying Everything Together 359
 10.7 Conclusions and Future Work 371
References .. 373
Part IV Parallel Applications

11 Full-Scale Simulation of Cardiac Electrophysiology on Parallel Computers
Xing Cai, Glenn Terje Lines

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>385</td>
</tr>
<tr>
<td>11.2 The Mathematical Model</td>
<td>390</td>
</tr>
<tr>
<td>11.3 The Numerical Strategy</td>
<td>392</td>
</tr>
<tr>
<td>11.4 A Parallel Electro-Cardiac Simulator</td>
<td>399</td>
</tr>
<tr>
<td>11.5 Some Techniques for Overhead Reduction</td>
<td>403</td>
</tr>
<tr>
<td>11.6 Numerical Experiments</td>
<td>405</td>
</tr>
<tr>
<td>11.7 Concluding Remarks</td>
<td>408</td>
</tr>
<tr>
<td>References</td>
<td>409</td>
</tr>
</tbody>
</table>

12 Developing a Geodynamics Simulator with PETSc
Matthew G. Knepley, Richard F. Katz, Barry Smith

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Geodynamics of Subduction Zones</td>
<td>413</td>
</tr>
<tr>
<td>12.2 Integrating PETSc</td>
<td>415</td>
</tr>
<tr>
<td>12.3 Data Distribution and Linear Algebra</td>
<td>418</td>
</tr>
<tr>
<td>12.4 Solvers</td>
<td>428</td>
</tr>
<tr>
<td>12.5 Extensions</td>
<td>431</td>
</tr>
<tr>
<td>12.6 Simulation Results</td>
<td>435</td>
</tr>
<tr>
<td>References</td>
<td>437</td>
</tr>
</tbody>
</table>

13 Parallel Lattice Boltzmann Methods for CFD Applications
Carolin Körner, Thomas Pohl, Ulrich Rüde, Nils Thürey, Thomas Zeiser

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>439</td>
</tr>
<tr>
<td>13.2 Basics of the Lattice Boltzmann Method</td>
<td>440</td>
</tr>
<tr>
<td>13.3 General Implementation Aspects and Optimization of the Single CPU Performance</td>
<td>445</td>
</tr>
<tr>
<td>13.4 Parallelization of a Simple Full-Grid LBM Code</td>
<td>452</td>
</tr>
<tr>
<td>13.5 Free Surfaces</td>
<td>454</td>
</tr>
<tr>
<td>13.6 Summary and Outlook</td>
<td>462</td>
</tr>
<tr>
<td>References</td>
<td>463</td>
</tr>
</tbody>
</table>

Color Figures | 467 |
Numerical Solution of Partial Differential Equations on Parallel Computers
Bruaset, A.M.; Tveito, A. (Eds.)
2006, XII, 482 p. 201 illus., 30 illus. in color., Softcover
ISBN: 978-3-540-29076-6