Table of Contents

Invited Talks

Fast and Reliable Random Number Generators for Scientific Computing 1
Richard P. Brent

New Generalized Data Structures for Matrices Lead to a Variety of High Performance Dense Linear Algebra Algorithms 11
Fred G. Gustavson

Management of Deep Memory Hierarchies – Recursive Blocked Algorithms and Hybrid Data Structures for Dense Matrix Computations 21
Bo Kågström

Fortran Is Getting More and More Powerful .. 33
John K. Reid

Large-Scale Computations with the Unified Danish Eulerian Model 43
Zahari Zlatev

Minisymposia

I Interval Methods

Interval Methods: An Introduction ... 53

A Chemical Engineering Challenge Problem That Can Benefit from Interval Methods ... 57
Luke E.K. Achenie and Gennadi M. Ostrovsky

Performance of Taylor Model Methods for Validated Integration of ODEs 65
Martin Berz and Kyoko Makino

On the Use of Intervals in Scientific Computing:
What Is the Best Transition from Linear to Quadratic Approximation? 75
Martine Ceberio, Vladik Kreinovich, and Lev Ginzburg
HPC-ICTM: The Interval Categorizer Tessellation-Based Model for High Performance Computing ... 83
 Marilton S. de Aguiar, Graçaiz P. Dimuro, Fábia A. Costa, Rafael K.S. Silva, César A.F. De Rose, Antônio C.R. Costa, and Vladik Kreinovich

Counting the Number of Connected Components of a Set and Its Application to Robotics .. 93
 Nicolas Delanoue, Luc Jaulin, and Bertrand Cottenceau

Interval-Based Markov Decision Processes for Regulating Interactions Between Two Agents in Multi-agent Systems 102
 Graçaiz P. Dimuro and Antônio C.R. Costa

A Domain Theoretic Account of Euler’s Method for Solving Initial Value Problems .. 112
 Abbas Edalat and Dirk Pattinson

Reliable Computation of Equilibrium States and Bifurcations in Nonlinear Dynamics ... 122
 C. Ryan Gwaltney and Mark A. Stadtherr

A Verification Method for Solutions of Linear Programming Problems 132
 Ismail I. Idriss

Compressing 3D Measurement Data Under Interval Uncertainty 142
 Olga Kosheleva, Sergio Cabrera, Brian Usevitch, and Edward Vidal Jr.

Computing Interval Bounds for Statistical Characteristics Under Expert-Provided Bounds on Probability Density Functions 151
 Victor G. Krymsky

Interval Parallel Global Optimization with Charm++ 161
 José A. Martínez, Leocadio G. Casado, José A. Alvarez, and Inmaculada García

On the Approximation of Interval Functions .. 169
 Klaus Meer

The Distributed Interval Geometric Machine Model 179
 Renata H.S. Reiser, Antônio C.R. Costa, and Graçaiz P. Dimuro

New Algorithms for Statistical Analysis of Interval Data 189
 Gang Xiang, Scott A. Starks, Vladik Kreinovich, and Luc Longpré

On Efficiency of Tightening Bounds in Interval Global Optimization 197
 Antanas Žilinskas and Julius Žilinskas
II Trends in Large Scale Computing

Trends in Large Scale Computing: An Introduction 206
 Organizer: Scott B. Baden

Ygdrasil: Aggregator Network Toolkit for Large Scale Systems
and the Grid ... 207
 Susanne M. Balle, John Bishop, David LaFrance-Linden, and Howard Rifkin

Enabling Coupled Scientific Simulations on the Grid 217
 Alan Sussman and Henrique Andrade

III High Performance Linear Algebra Algorithms

High Performance Linear Algebra Algorithms: An Introduction 225
 Organizers: Fred G. Gustavson and Jerzy Waśniewski

Applying Software Testing Metrics to Lapack 228
 David J. Barnes and Tim R. Hopkins

A Matrix-Type for Performance–Portability 237
 N. Peter Drakenberg

A New Array Format for Symmetric and Triangular Matrices 247
 John A. Gunnels and Fred G. Gustavson

A Family of High-Performance Matrix Multiplication Algorithms 256
 John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn

IV Substructuring, Dimension Reduction and Applications

Substructuring, Dimension Reduction and Applications: An Introduction 266
 Organizers: Zhaojun Bai and Ren-Cang Li

Parallel Algorithms for Balanced Truncation Model Reduction
of Sparse Systems .. 267
 José M. Badía, Peter Benner, Rafael Mayo, and Enrique S. Quintana-Ortí

Towards an Optimal Substructuring Method for Model Reduction 276
 Zhaojun Bai and Ben-Shan Liao

Model Reduction for RF MEMS Simulation 286
 David S. Bindel, Zhaojun Bai, and James W. Demmel
A Model-Order Reduction Technique for Low Rank Rational Perturbations of Linear Eigenproblems

Frank Blömel and Heinrich Voss

Parallel Global Optimization of Foundation Schemes in Civil Engineering

Raimondas Čiegis, Milda Baravykaitė, and Rimantas Belevičius

A Combined Linear and Nonlinear Preconditioning Technique for Incompressible Navier-Stokes Equations

Feng-Nan Hwang and Xiao-Chuan Cai

Structure-Preserving Model Reduction

Ren-Cang Li and Zhaojun Bai

A Comparison of Parallel Preconditioners for the Sparse Generalized Eigenvalue Problems by Rayleigh-Quotient Minimization

Sangback Ma and Ho-Jong Jang

Theoretical Relations Between Domain Decomposition and Dynamic Substructuring

Daniel J. Rixen

Model Order Reduction for Large Scale Engineering Models Developed in ANSYS

Evgenii B. Rudnyi and Jan G. Korvink

Rational Krylov for Large Nonlinear Eigenproblems

Axel Ruhe

Algebraic Sub-structuring for Electromagnetic Applications

Chao Yang, Weiguo Gao, Zhaojun Bai, Xiaoye S. Li, Lie-Quan Lee, Parry Husbands, and Esmond G. Ng

V Parallel Processing in Science and Engineering

Parallel Processing in Science and Engineering: An Introduction

Organizer: Adam W. Bojańczyk

Rapid Development of High-Performance Linear Algebra Libraries

Paolo Bientinesi, John A. Gunnels, Fred G. Gustavson, Greg M. Henry, Margaret Myers, Enrique S. Quintana-Ortí, and Robert A. van de Geijn

Automatic Derivation of Linear Algebra Algorithms with Application to Control Theory

Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn

Cluster Computing for Financial Engineering

Shirish Chinchalkar, Thomas F. Coleman, and Peter Mansfield
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-automatic Generation of Grid Computing Interfaces</td>
<td>404</td>
</tr>
<tr>
<td>for Numerical Software Libraries</td>
<td></td>
</tr>
<tr>
<td>Erik Elmroth and Rikard Skelander</td>
<td></td>
</tr>
<tr>
<td>Rapid Development of High-Performance Out-of-Core Solvers</td>
<td>413</td>
</tr>
<tr>
<td>Thierry Joffrain, Enrique S. Quintana-Ortí, and Robert A. van de Geijn</td>
<td></td>
</tr>
<tr>
<td>ALPS: A Software Framework</td>
<td>423</td>
</tr>
<tr>
<td>for Parallel Space-Time Adaptive Processing</td>
<td></td>
</tr>
<tr>
<td>Kyusoon Lee and Adam W. Bojaniczuk</td>
<td></td>
</tr>
<tr>
<td>Hybrid Parallelization of CFD Applications</td>
<td>433</td>
</tr>
<tr>
<td>with Dynamic Thread Balancing</td>
<td></td>
</tr>
<tr>
<td>Alexander Spiegel, Dieter an Mey, and Christian Bischof</td>
<td></td>
</tr>
<tr>
<td>VI Distributed Computing: Tools, Paradigms and Infrastructures</td>
<td></td>
</tr>
<tr>
<td>Distributed Computing: Tools, Paradigms and Infrastructures. An Introduction</td>
<td>442</td>
</tr>
<tr>
<td>Organizers: Beniamino Di Martino, Rocco Aversa, and Laurence Tianruo Yang</td>
<td></td>
</tr>
<tr>
<td>Parallelization of GSL: Performance of Case Studies</td>
<td>444</td>
</tr>
<tr>
<td>José Aliaga, Francisco Almeida, José M. Badía, Sergio Barrachina, Vicente Blanco, María Castillo, U. Dorta, Rafael Mayo, Enrique S. Quintana, Gregorio Quintana, Casiano Rodríguez, and Francisco de Sande</td>
<td></td>
</tr>
<tr>
<td>Design of Policy-Based Security Mechanisms in a Distributed Web Services Architecture</td>
<td>454</td>
</tr>
<tr>
<td>Valentina Casola, Antonino Mazzeo, Nicola Mazzocca, and Salvatore Venticinque</td>
<td></td>
</tr>
<tr>
<td>Supporting Location-Aware Distributed Applications on Mobile Devices</td>
<td>464</td>
</tr>
<tr>
<td>Cristiano di Flora, Massimo Ficco, and Stefano Russo</td>
<td></td>
</tr>
<tr>
<td>Grid Application Development on the Basis of Web Portal Technology</td>
<td>472</td>
</tr>
<tr>
<td>Gábor Dózsa, Péter Kacsuk, and Csaba Németh</td>
<td></td>
</tr>
<tr>
<td>A Distributed Divide and Conquer Skeleton</td>
<td>481</td>
</tr>
<tr>
<td>Juan R. González, Coromoto León, and Casiano Rodríguez</td>
<td></td>
</tr>
<tr>
<td>A Tool to Display Array Access Patterns in OpenMP Programs</td>
<td>490</td>
</tr>
<tr>
<td>Oscar R. Hernandez, Chunhua Liao, and Barbara M. Chapman</td>
<td></td>
</tr>
</tbody>
</table>
A Model Analysis of a Distributed Monitoring System Using a Multi-formalism Approach .. 499
Mauro Iacono, Stefano Marrone, Nicola Mazzocca, Francesco Moscato, and Valeria Vittorini

Performance Oriented Development and Tuning of GRID Applications 509
Emilio Mancini, Massimiliano Rak, Roberto Torella, and Umberto Villano

Towards a Bulk-Synchronous Distributed Shared Memory Programming Environment for Grids 519
Håkan Mattsson and Christoph Kessler

VII HPC in Earth and Space Science

High-Performance Computing in Earth- and Space-Science: An Introduction ... 527
Organizer: Peter Messmer

Applying High Performance Computing Techniques in Astrophysics 530
Francisco Almeida, Evencio Mediavilla, Alex Oscoz, and Francisco de Sande

Statistical Properties of Dissipative MHD Accelerators 538
Kaspar Arzner, Loukas Vlahos, Bernard Knaepen, and Nicolas Denewet

A Simulation Model for Forest Fires .. 546
Gino Bella, Salvatore Filippone, Alessandro De Maio, and Mario Testa

MHD Modeling of the Interaction Between
the Solar Wind and Solar System Objects ... 554
Andreas Ekenbäck and Mats Holmström

Implementing Applications with the Earth System Modeling Framework 563

Parallel Discrete Event Simulations of Grid-Based Models:
Asynchronous Electromagnetic Hybrid Code ... 573
Homa Karimabadi, Jonathan Driscoll, Jagrut Dave, Yuri Omelchenko, Kalyan Perumalla, Richard Fujimoto, and Nick Omidi

Electromagnetic Simulations of Dusty Plasmas 583
Peter Messmer
Advanced Algorithms and Software Components for Scientific Computing:

An Introduction ... 590

Organizer: Padma Raghavan

Extending PSBLAS to Build Parallel Schwarz Preconditioners 593

Alfredo Buttari, Pasqua D’Ambra, Daniela di Serafino, and Salvatore Filippone

A Direct Orthogonal Sparse Static Methodology for a Finite Continuation Hybrid LP Solver ... 603

Pablo Guerrero-García and Ángel Santos-Palomo

Applying Parallel Direct Solver Techniques to Build Robust High Performance Preconditioners 611

Pascal Hénon, François Pellegrini, Pierre Ramet, Jean Roman, and Yousef Saad

The Design of Trilinos .. 620

Michael A. Heroux and Marzio Sala

Software Architecture Issues in Scientific Component Development 629

Boyana Norris

Parallel Hybrid Sparse Solvers Through Flexible Incomplete Cholesky Preconditioning ... 637

Keita Teranishi and Padma Raghavan

Parallel Heuristics for an On-Line Scientific Database for Efficient Function Approximation ... 644

Ivana Veljkovic and Paul E. Plassmann

Software Engineering and Problem Solving Environments for Scientific Computing:

Software Engineering and Problem Solving Environments for Scientific Computing: An Introduction 654

Organizers: Jose C. Cunha and Omer F. Rana

A General Architecture for Grid-Based PSE Toolkits 656

Mario Cannataro, Carmela Comito, Antonio Congiusta, Gianluigi Folino, Carlo Mastroianni, Andrea Pugliese, Giandomenico Spezzano, Domenico Talia, and Pierangelo Veltri

An Expert Assistant for Computer Aided Parallelization 665

Gabriele Jost, Robert Chun, Haoqiang Jin, Jesus Labarta, and Judit Gimenez
XVIII Table of Contents

- **Scalable Middleware Environment for Agent-Based Internet Applications**

 Benno J. Overeinder and Frances M.T. Brazier

 Page: 675

- **Automatic Generation of Wrapper Code and Test Scripts for Problem Solving Environments**

 Andreas Schreiber

 Page: 680

X Runtime Software Techniques for Enabling High-Performance Applications

- **Runtime Software Techniques for Enhancing High-Performance Applications: An introduction**

 Masha Sosonkina

 Page: 690

- **Efficient Execution of Scientific Computation on Geographically Distributed Clusters**

 Eduardo Argollo, Dolores Rexachs, Fernando G. Tinetti, and Emilio Luque

 Page: 691

- **Improving the Performance of Large-Scale Unstructured PDE Applications**

 Xing Cai

 Page: 699

- **A Runtime Adaptive Load Balancing Algorithm for Particle Simulations**

 Matthew F. Dixon

 Page: 709

- **Evaluating Parallel Algorithms for Solving Sylvester-Type Matrix Equations: Direct Transformation-Based Versus Iterative Matrix-Sign-Function-Based Methods**

 Robert Granat and Bo Kågström

 Page: 719

- **Performance Analysis for Parallel Adaptive FEM on SMP Clusters**

 Judith Hippold and Gudula Rünger

 Page: 730

- **Performance Tuning of Matrix Triple Products Based on Matrix Structure**

 Eun-Jin Im, Ismail Bustany, Cleve Ashcraft, James W. Demmel, and Katherine A. Yelick

 Page: 740

- **Adapting Distributed Scientific Applications to Run-Time Network Conditions**

 Masha Sosonkina

 Page: 747

XI Sparse Direct Linear Solvers

- **Sparse Direct Linear Solvers: An Introduction**

 Organizer: Sivan Toledo

 Page: 756

- **Oblio: Design and Performance**

 Florin Dobrian and Alex Pothen

 Page: 758
Performance Analysis of Parallel Right-Looking Sparse LU Factorization on Two Dimensional Grids of Processors .. 768
Laura Grigori and Xiaoye S. Li

A Shared- and Distributed-Memory Parallel Sparse Direct Solver 778
Anshul Gupta

Simple and Efficient Modifications of Elimination Orderings 788
Pinar Heggernes and Yngve Villanger

Optimization of a Statically Partitioned Hypermatrix Sparse Cholesky Factorization ... 798
José R. Herrero and Juan J. Navarro

Maximum-Weighted Matching Strategies and the Application to Symmetric Indefinite Systems ... 808
Stefan Röllin and Olaf Schenk

An Evaluation of Sparse Direct Symmetric Solvers: An Introduction and Preliminary Findings ... 818
Jennifer A. Scott, Yifan Hu, and Nicholas I.M. Gould

XII Treatment of Large Scale Models

Treatment of Large Scientific Problems: An Introduction 828
Organizers: Zahari Zlatev and Krassimir Georgiev

Towards a Parallel Multilevel Preconditioned Maxwell Eigensolver 831
Peter Arbenz, Martin Bečka, Roman Geus, and Ulrich Hetmaniuk

On Improvement of the Volcano Search and Optimization Strategy 839
Venansius Baryamureeba and John Ngubiri

Aggregation-Based Multilevel Preconditioning of Non-conforming FEM Elasticity Problems ... 847
Radim Blaheta, Svetozar Margenov, and Maya Neytcheva

Efficient Solvers for 3-D Homogenized Elasticity Model 857
Ronald H.W. Hoppe and Svetozara I. Petrova

Performance Evaluation of a Parallel Algorithm for a Radiative Transfer Problem ... 864
Paulo B. Vasconcelos and Filomena d’Almeida

XIII Performance Evaluation and Design of Hardware-Aware PDE Solvers

Performance Evaluation and Design of Hardware-Aware PDE Solvers: An Introduction .. 872
Organizers: Frank Hülsemann and Markus Kowarschik
A Cache-Aware Algorithm for PDEs on Hierarchical Data Structures 874
Frank Günther, Miriam Mehl, Markus Pögl, and Christoph Zenger

Constructing Flexible, Yet Run Time Efficient PDE Solvers 883
Frank Hülsemann and Benjamin Bergen

Analyzing Advanced PDE Solvers Through Simulation 893
Henrik Johansson, Dan Wallin, and Sverker Holmgren

Towards Cache-Optimized Multigrid Using Patch-Adaptive Relaxation 901
Markus Kowarschik, Iris Christadler, and Ulrich Rüde

Hierarchical Partitioning and Dynamic Load Balancing
for Scientific Computation .. 911
James D. Teresco, Jamal Faik, and Joseph E. Flaherty

Cache Optimizations for Iterative Numerical Codes Aware
of Hardware Prefetching .. 921
Josef Weidendorfer and Carsten Trinitis

XIV Computationally Expensive Methods in Statistics

Computationally Expensive Methods in Statistics: An Introduction 928
Organizer: Wolfgang M. Hartmann

Dimension Reduction vs. Variable Selection 931
Wolfgang M. Hartmann

Reproducible Statistical Analysis in Microarray Profiling Studies 939
Ulrich Mansmann, Markus Ruschhaupt, and Wolfgang Huber

Step-Down FDR Procedures for Large Numbers of Hypotheses 949
Paul N. Somerville

XV Approaches or Methods
of Security Engineering (AMSE)

Applying Security Engineering to Build Security Countermeasures:
An Introduction .. 957
Organizers: Tai-hoonn Kim and Ho-yeol Kwon

CC-SEMS: A CC Based Information System Security
Evaluation Management System ... 964
Young-whan Bang, Yeun-hee Kang, and Gang-soo Lee

A Secure Migration Mechanism of Mobile Agents
Under Mobile Agent Environments ... 974
Dongwon Jeong, Young-Gab Kim, Young-Shil Kim, Lee-Sub Lee,
Soo-Hyun Park, and Doo-Kwon Baik
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Flexible Privilege Management Scheme for Role Graph Model</td>
<td>983</td>
</tr>
<tr>
<td>Yuna Jung and Eenjun Hwang</td>
<td></td>
</tr>
<tr>
<td>The System Modeling for Detections of New Malicious Codes</td>
<td>992</td>
</tr>
<tr>
<td>EunYoung Kim, CheolHo Lee, HyungGeun Oh, and JinSeok Lee</td>
<td></td>
</tr>
<tr>
<td>Information Hiding Method Using CDMA on Wave Files</td>
<td>1000</td>
</tr>
<tr>
<td>Young-Shil Kim, Sang Yun Park, Suk-Hee Wang, and Seung Lee</td>
<td></td>
</tr>
<tr>
<td>Efficient Key Distribution Protocol for Electronic Commerce</td>
<td>1009</td>
</tr>
<tr>
<td>in Mobile Communications</td>
<td></td>
</tr>
<tr>
<td>Jin Kwak, SooHyun Oh, and Dongho Won</td>
<td></td>
</tr>
<tr>
<td>A Framework for Modeling Organization Structure in Role Engineering</td>
<td>1017</td>
</tr>
<tr>
<td>HyungHyo Lee, YoungLok Lee, and BongNam Noh</td>
<td></td>
</tr>
<tr>
<td>An Efficient Pointer Protection Scheme to Defend Buffer Overflow Attacks</td>
<td>1025</td>
</tr>
<tr>
<td>Yongsu Park and Yookun Cho</td>
<td></td>
</tr>
</tbody>
</table>

Contributed Talks

I Contributed Talks in this Volume

Parallel Hierarchical Radiosity: The PIT Approach | 1031 |
| *Fabrizio Baiardi, Paolo Mori, and Laura Ricci* | |

Optimizing Locationing of Multiple Masters for Master-Worker Grid Applications | 1041 |
| *Cyril Banino* | |

An OGSA-Based Bank Service for Grid Accounting Systems | 1051 |
| *Erik Elmroth, Peter Gardfjäll, Olle Mulmo, and Thomas Sandholm* | |

A Grid Resource Broker Supporting Advance Reservations and Benchmark-Based Resource Selection | 1061 |
| *Erik Elmroth and Johan Tordsson* | |

The Dragon Graph: A New Interconnection Network for High Speed Computing | 1071 |
| *Jywe-Fei Fang* | |

Speeding up Parallel Graph Coloring | 1079 |
| *Assefaw H. Gebremedhin, Fredrik Manne, and Tom Woods* | |

On the Efficient Generation of Taylor Expansions for DAE Solutions by Automatic Differentiation | 1089 |
| *Andreas Griewank and Andrea Walther* | |
Edge-Disjoint Hamiltonian Cycles of WK-Recursive Networks 1099
Chien-Hung Huang, Jywe-Fei Fang, and Chin-Yang Yang

Simulation-Based Analysis of Parallel Runge-Kutta Solvers 1105
Matthias Korch and Thomas Rauber

A Novel Task Scheduling Algorithm
for Distributed Heterogeneous Computing Systems 1115
Guan-Joe Lai

Study of Load Balancing Strategies
for Finite Element Computations on Heterogeneous Clusters 1123
Kalyani Munasinghe and Richard Wait

Parallel Algorithms for the Determination of Lyapunov Characteristics
of Large Nonlinear Dynamical Systems .. 1131
Günter Radons, Gudula Rünger, Michael Schwind, and Hong-liu Yang

Online Task Scheduling on Heterogeneous Clusters:
An Experimental Study .. 1141
Einar M.R. Rosenvinge, Anne C. Elster, and Cyril Banino

A Parallel Method for Large Sparse Generalized Eigenvalue Problems
by OmniRPC in a Grid Environment .. 1151
Tetsuya Sakurai, Kentaro Hayakawa, Mitsuhisa Sato,
and Daisuke Takahashi

An Implementation of Parallel 3-D FFT
Using Short Vector SIMD Instructions on Clusters of PCs 1159
Daisuke Takahashi, Taisuke Boku, and Mitsuhisa Sato

II Contributed Talks Appearing Elsewhere

Other Para’04 Contributed Talks .. 1168

Author Index ... 1171
Applied Parallel Computing
State of the Art in Scientific Computing
Dongarra, J.; Madsen, K.; Wasniewski, J. (Eds.)
2006, XXII, 1174 p., Softcover
ISBN: 978-3-540-29067-4