Contents

1 The Green Plant as an Intelligent Organism 1
 Anthony Trewavas
 1.1 Introduction .. 1
 1.1.1 The Problems of Subjective Intelligence 2
 1.1.2 An Ability to Integrate a Multiplicity of Information into a Response Is an Important Intelligent Capability 2
 1.1.3 Experimental Circumstances Can Be Misleading 3
 1.2 Intelligent Behaviour of Single Cells 4
 1.2.1 Molecular Networks in Single Eucaryote Cells 4
 1.2.2 Bacterial Intelligence and Phosphoneural Networks ... 6
 1.2.3 Observations of Eucaryote Single Cell Intelligence ... 6
 1.3 Other Forms of Biological Intelligence 7
 1.4 The Intelligence of Green Plants 8
 1.4.1 Decisions and Choice in Plant Development 9
 1.4.2 Predictive Modelling to Improve Fitness 10
 1.4.3 Internal Assessment of Present State Before Phenotypic Change 11
 1.5 Conclusions and Future Prospects 11
 References ... 12

2 Neurobiological View of Plants and Their Body Plan 19
 František Baluška, Andrej Hlavacka, Stefano Mancuso, Peter W. Barlow
 2.1 Introduction .. 20
 2.2 Root Apex as the Anterior Pole of the Plant Body 21
 2.3 Shoot Apex as the Posterior Pole of the Plant Body 23
 2.4 Auxin as a Plant Neurotransmitter 24
 2.5 Cellular End-Poles as Plant Synapses 24
 2.6 Vascular Strands as Plant Neurons 25
 2.7 Root Apices as “Brain-Like” Command CENTres 27
 2.8 Ancient Fungal-Like Nature of Roots 29
 2.9 Conclusions and Future Prospects 31
 References ... 31
3 Charles Darwin and the Plant Root Apex: Closing a Gap in Living Systems Theory as Applied to Plants
Peter W. Barlow

3.1 Introduction .. 37
3.2 The Advancing Root Front and Brain System 39
3.3 The Location of the Plant Root-Brain 39
 3.3.1 Clues from the Transition Zone 39
 3.3.2 Clues from the Polarity of Auxin Flow 41
 3.3.3 The Muscular Root-Brain 42
3.4 The Anterior Root-Brain ... 43
3.5 Closing a Gap in Living Systems Theory 44
3.6 Conclusions and Future Prospects 47
References ... 49

4 How Can Plants Choose the Most Promising Organs?
Tsvi Sachs

4.1 Introduction: Developmental Selection of Branch Configurations .. 53
4.2 An Experimental Model Demonstrates Branch Competition 54
 4.2.1 The Experimental System 54
 4.2.2 Stress Increases Competition 56
 4.2.3 Unequal Light Conditions 56
 4.2.4 The Rate of Shoot Development and Leaf Removal 56
 4.2.5 Hypothesis: Branches Compete 59
4.3 Mechanisms of Competition ... 60
4.4 Conclusions and Future Prospects 61
References ... 62

5 The Role of Root Apices in Shoot Growth Regulation: Support for Neurobiology at the Whole Plant Level?
Peter M. Neumann

5.1 Introduction .. 65
5.2 The Comparative Need for Rapid Neurobiological Activity in Animals and Plants 66
5.3 Plants That Manage Without Roots, Root Apices and Vascular Tissues .. 67
5.4 Do Plant Shoot Responses to Environmental Stresses Require Rapid Root-to-Shoot Signaling? 69
5.5 Conclusions and Future Perspectives 72
References ... 72
6 Signals and Targets Triggered by Self-Incompatibility in Plants: Recognition of “Self” Can Be Deadly

S.G. Thomas, S. Huang, C.J. Staiger, V.E. Franklin-Tong

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>75</td>
</tr>
<tr>
<td>6.1.1 Pollen–Pistil Interactions</td>
<td>76</td>
</tr>
<tr>
<td>6.1.2 Self-Incompatibility</td>
<td>77</td>
</tr>
<tr>
<td>6.2 The Actin Cytoskeleton and Self-Incompatibility</td>
<td>78</td>
</tr>
<tr>
<td>6.2.1 Actin as a Sensor of Environmental Stimuli</td>
<td>78</td>
</tr>
<tr>
<td>6.2.2 Actin as a Target for Self-Incompatibility Signals in Incompatible Pollen</td>
<td>79</td>
</tr>
<tr>
<td>6.2.3 Self-Incompatibility Stimulates Rapid and Sustained Depolymerization of F-Apotin</td>
<td>80</td>
</tr>
<tr>
<td>6.2.4 Increases in Cytosolic Calcium Lead to Changes in F-Apotin</td>
<td>81</td>
</tr>
<tr>
<td>6.2.5 Profilin and Gelsolin: Mediators of Actin Alterations?</td>
<td>81</td>
</tr>
<tr>
<td>6.2.6 PrABP80 is Poppy Gelsolin</td>
<td>82</td>
</tr>
<tr>
<td>6.3 Programmed Cell Death and Self-Incompatibility</td>
<td>84</td>
</tr>
<tr>
<td>6.3.1 Key Features of Programmed Cell Death</td>
<td>84</td>
</tr>
<tr>
<td>6.3.2 Programmed Cell Death is Triggered During the Papaver Self-Incompatibility Response</td>
<td>85</td>
</tr>
<tr>
<td>6.3.3 A Link Between Actin and Programmed Cell Death?</td>
<td>87</td>
</tr>
<tr>
<td>6.4 Conclusions and Future Perspectives</td>
<td>87</td>
</tr>
</tbody>
</table>

References | 89 |

7 Signal Perception and Transduction in Plant Innate Immunity

Thorsten Nürnberger, Birgit Kemmerling

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>95</td>
</tr>
<tr>
<td>7.2 PAMPs as Triggers of Nonplant Cultivar-Specific Innate Immune Responses</td>
<td>96</td>
</tr>
<tr>
<td>7.3 Plant Pattern Recognition Receptors Mediate PAMP Perception and Activation of Non-Cultivar-Specific Plant Defense</td>
<td>98</td>
</tr>
<tr>
<td>7.4 Pathogen Recognition in Host Cultivar-Specific Resistance</td>
<td>100</td>
</tr>
<tr>
<td>7.5 Intracellular Signal Transduction in Plant Innate Immunity</td>
<td>102</td>
</tr>
<tr>
<td>7.6 Conclusions and Future Prospects</td>
<td>104</td>
</tr>
</tbody>
</table>

References | 104 |
8 Nitric Oxide Involvement in Incompatible Plant–Pathogen Interactions
Matteo De Stefano, Alberto Ferrarini, Massimo Delledonne

8.1 Introduction ... 111
8.2 Activation of the Defense Response 112
8.3 NO Production During the Hypersensitive Disease
 Resistance Response .. 113
8.4 Experimental Approaches for Manipulation
 of Endogenous NO Levels .. 114
8.5 NO and Cell Death ... 115
8.6 NO Signaling in the Plant Defense Response 116
8.7 Systemic Acquired Resistance and NO 117
8.8 Conclusions and Future Prospects 118
References .. 119

9 From Cell Division to Organ Shape: Nitric Oxide
 Is Involved in Auxin-Mediated Root Development
María Luciana Lanteri, Magdalena Graziano,
 Natalia Correa-Aragunde, Lorenzo Lamattina

9.1 Introduction ... 123
 9.1.1 Auxins Control Root Development 124
 9.1.2 Nitric Oxide Is a New Player in Auxin-Mediated
 Root Development: Summary of Its Effects 125
9.2 Nitric Oxide Mediates Auxin-Induced
 Lateral Root Development .. 127
9.3 Nitric Oxide Is Required for Adventitious Root Formation... 129
 9.3.1 Nitric Oxide Acts Downstream of Auxins
 to Induce Adventitious Root Formation 130
 9.3.2 Nitric Oxide Activates Cyclic GMP Dependent
 Pathways During Adventitious Root Formation... 130
 9.3.3 Nitric Oxide Induces Cyclic GMP Independent
 Pathways During Adventitious Root Formation..... 131
9.4 Conclusions and Future Perspectives 133
References .. 133

10 Neurotransmitters, Neuroregulators and Neurotoxins in Plants
Susan J. Murch

10.1 Neurotransmitters: Signaling Molecule in Plants? 137
10.2 Neuroregulators in Plants .. 142
10.3 Neurotoxins in Plants .. 144
10.4 Conclusions and Future Prospects 148
References .. 148
11 Amino Acid Transport in Plants and Transport of Neurotransmitters in Animals: a Common Mechanism? 153
Tobias Müller, Wolfgang Koch, Daniel Wipf

11.1 Introduction ... 153
11.2 Amino Acid Transport in Animals 154
 11.2.1 Sodium Dicarboxylate Symporter Family (SDS, SLC1) 154
 11.2.2 The Sodium- and Chloride-Dependent Neurotransmitter Transporter Family (NTF, SLC6) 156
 11.2.3 Cationic Amino Acid Transporters and Heteromeric Amino Acid Transporters (SLC7) 156
 11.2.4 The Type I Phosphate Transporter Family (SLC17) 157
 11.2.5 The Vesicular Inhibitory Amino Acid Transporter Family (VIAAT, SLC32) 157
 11.2.6 The Proton/Amino Acid Transporter Family (PAT, SLC36) 157
 11.2.7 The Sodium-Coupled Neutral Amino Acid Transporter Family (SNAT, SLC38) 158
11.3 Amino Acid Transport in Plants .. 159
 11.3.1 Amino Acid–Polyamine–Choline Transporter Family 159
 11.3.2 Amino Acid Transporter Family 1 160
11.4 Conclusions and Future Prospects 165
References .. 166

12 GABA and GHB Neurotransmitters in Plants and Animals 171
Aaron Fait, Ayelet Yellin, Hillel Fromm

12.1 Introduction ... 171
12.2 The GABA Shunt and GABA Signaling 173
 12.2.1 Mammalian GABA Signaling .. 173
 12.2.2 GABA Signaling in Plants .. 173
 12.2.3 GABA Transporters .. 175
12.3 GHB, a By-Product of the GABA Shunt and a Neurotransmitter .. 177
 12.3.1 From Elixir of Life to Date-Rape Drug 177
 12.3.2 SSADH Inborn Deficiency: the Dark Side of GHB 178
 12.3.3 The GABA Shunt and Redox Imbalance: from Bacteria to Humans 179
 12.3.4 The GABA Shunt, GHB, and the Redox State in Plants 180
12.4 Conclusions and Future Perspectives 181
References .. 181
13 The *Arabidopsis thaliana* Glutamate-like Receptor Family (AtGLR) 187
Matthew Gilliham, Malcolm Campbell, Christian Dubos, Dirk Becker, Romola Davenport

13.1 Introduction ... 187
13.2 Roles (and Effects) of Glutamate, Glycine and Interrelated Amino Acids in Plants 189
13.2.1 Effects of Amino Acids on Plant Development 189
13.2.2 Glutamate and Glycine as Signalling Molecules 190
13.3 Roles of AtGLR ... 192
13.3.1 Expression ... 192
13.3.2 Amino Acid Binding and AtGLR Regulation 193
13.3.3 Are AtGLRs Ion Channels? ... 194
13.3.4 C:N Signalling .. 195
13.3.5 Stress Responses .. 196
13.4 Conclusions and Future Perspectives 197
13.4.1 Expression ... 197
13.4.2 Ligand Binding and Regulation 198
13.4.3 Knockout and Overexpression Phenotyping 198
13.4.4 Heterologous Expression .. 199
13.4.5 NSCC Characterisation .. 200
References ... 200

14 Similarities Between Endocannabinoid Signaling in Animal Systems and N-Acylethanolamine Metabolism in Plants 205
Elison B. Blancaflor, Kent D. Chapman

14.1 Introduction and Overview of Mammalian Endocannabinoid Signaling ... 205
14.2 NAE Structure and Occurrence in Plants 207
14.3 NAE Metabolism in Plants .. 208
14.3.1 NAE Formation .. 208
14.3.2 NAE Hydrolysis .. 210
14.3.3 NAE Oxidation .. 211
14.3.4 NACE Formation .. 212
14.4 Prospective Functions of NAE in Plants 213
14.4.1 NAEs in Plant Defense Responses 213
14.4.2 NAE in Seed Germination and Seedling Growth 215
14.5 Conclusions and Future Prospects 216
References ... 216
15 Regulation of Plant Growth and Development by Extracellular Nucleotides 221
Stanley J. Roux, Charlotte Song, Collene Jeter
15.1 Introduction .. 221
15.2 Rapid Responses of Plants to Applied Nucleotides 222
 15.2.1 Induced Changes in the Concentration of Cytoplasmic Calcium Ions .. 222
 15.2.2 Induced Changes in Superoxide Production 227
15.3 Slower Growth Response Changes Induced by eATP 228
15.4 Conclusions and Future Perspectives 231
References ... 232

16 Physiological Roles of Nonselective Cation Channels in the Plasma Membrane of Higher Plants 235
Vadim Demidchik
16.1 Introduction ... 235
16.2 Physiological Roles of Animal NSCC 236
16.3 Functional Classification of Plant NSCC 236
16.4 The Role of NSCC in Plant Mineral Nutrition.................... 237
 16.4.1 Potassium and Ammonium ... 237
 16.4.2 Calcium and Magnesium .. 238
 16.4.3 Microelements and Trace Elements 239
16.5 The Role of NSCC in Plant Signalling 240
16.6 The Role of NSCC in Plant Growth and Development 244
16.7 Conclusions and Future Perspectives 244
References ... 244

17 Touch-Responsive Behaviors and Gene Expression in Plants 249
Elizabeth McCormack, Luis Velasquez, Nikki A. Delk, Janet Braam
17.1 Specialized Plants – Touch Responses That Catch Attention .. 249
17.2 Thigmotropism – Vines, Tendrils and Roots 251
17.3 Thigmomorphogenesis – Plasticity of Shoot Growth 252
17.4 Mechanosensitive Gene Expression 253
17.5 Conclusions and Future Prospects 256
References ... 257

18 Oscillations in Plants 261
Sergey Shabala
18.1 Introduction ... 261
18.2 Diversity and Hierarchy of Plant Oscillators 262
 18.2.1 Spatial and Temporary Hierarchy 262
 18.2.2 Functional Expression ... 263
18.3 Advantages and Principles of Oscillatory Control 268
 18.3.1 Feedback Control, Damping
 and Self-Sustained Oscillations 268
 18.3.2 Advantages of Oscillatory Strategy 269
 18.3.3 Deterministic Chaos and “Strange” Behaviour 270
 18.3.4 Resonant Regimes ... 271
18.4 Conclusions and Future Perspectives .. 272
References .. 272

19 Electrical Signals in Long-Distance Communication in Plants 277
 Kazimierz Trebacz, Halina Dziubinska, Elzbieta Krol
 19.1 Action Potentials ... 277
 19.1.1 General Characteristics ... 277
 19.1.2 Ion Mechanism of Action Potentials 278
 19.1.3 Ways of Action Potential Transmission 283
 19.1.4 Physiological Implication of Plant Excitation 284
19.2 Conclusions and Future Perspectives .. 287
References .. 287

20 Slow Wave Potentials – a Propagating Electrical Signal
 Unique to Higher Plants 291
 Rainer Stahlberg, Robert E. Cleland, Elizabeth Van Volkenburgh
 20.1 A New Effort to Decipher the Impact
 of Electrical Long-Distance Signals in Plants 292
 20.2 Propagating Depolarization Signals in Plants 292
 20.3 SWPs are Hydraulically-Induced Depolarizations 295
 20.4 The Propagation of SWPs ... 301
 20.5 The Ionic Mechanism of SWPs .. 302
 20.6 The Effects of SWPs: Targeted Organs 303
 20.7 WPs and SWPs ... 304
References .. 305

21 Electrical Signals, the Cytoskeleton, and Gene Expression:
 a Hypothesis on the Coherence of the Cellular Responses
 to Environmental Insult 309
 Eric Davies, Bratislav Stankovic
 21.1 Introduction to the Hypothesis .. 309
 21.2 Evidence for Our Hypothesis ... 312
 21.2.1 Electrical Signals and Translation 312
 21.2.2 Calcium, the Cytoskeleton, and Translation 312
 21.2.3 Calcium Channels, the Cytoskeleton, and Transcription 315
21.3 Conclusions and Perspectives:
- The “Help! It’s a Virus” Hypothesis .. 318
- References ... 318

22 Characteristics and Functions of Phloem-Transmitted Electrical Signals in Higher Plants 321
Jörg Fromm, Silke Lautner

- 22.1 Introduction ... 321
- 22.2 Signal Perception and Short-Distance Electrical Signalling ... 322
- 22.3 Long-Distance Signalling via the Phloem 323
- 22.4 Characteristics of Phloem-Transmitted Action Potentials 325
- 22.5 Ion Channels of the Phloem ... 326
- 22.6 Functions of Electrical Signals in Higher Plants 326
- 22.7 Conclusions and Future Perspectives 329
- References ... 329

23 Long-Distance Signal Transmission in Trees 333
Stefano Mancuso, Sergio Mugnai

- 23.1 Introduction ... 333
- 23.2 Transmission of Chemicals .. 334
 - 23.2.1 From Where Does ABA Come? 335
 - 23.2.2 How Much ABA Is Involved in the Response of Trees to Drought? ... 335
 - 23.2.3 ABA and Xylem Sap pH ... 336
- 23.3 Hydraulic Signals .. 336
- 23.4 Integration of Chemical and Hydraulic Signals 338
- 23.5 Electrical Signals .. 339
- 23.6 Airborne Flow of Volatile Messengers 342
- 23.7 Colour Signals ... 343
- 23.8 Conclusions and Future Prospects 344
- References ... 345

24 Electrophysiology and Phototropism 351
Alexander G. Volkov

- 24.1 Introduction ... 351
- 24.2 Phototropism and Photosensors 353
- 24.3 Electrochemical Circuits ... 355
- 24.4 Measuring of Action, Graded, and Variation Potentials in Plants ... 356
- 24.5 Light-Induced Electrophysiological Signaling in Plants 358
- References ... 365
25 Hydro-Electrochemical Integration of the Higher Plant –
Basis for Electrogenic Flower Induction 369
Edgar Wagner, Lars Lehner, Johannes Normann,
Justyna Veit, Jolana Albrechtová

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.1 State of the Art in Photoperiodic Control of Flowering in Short- and Long-Day Plants</td>
<td>369</td>
</tr>
<tr>
<td>25.2 Rhythms in SER as Markers of Photoperiodic Control and Interorgan Communication in a Long- and a Short-Day Plant</td>
<td>373</td>
</tr>
<tr>
<td>25.3 Early Changes at the Shoot Apical Meristem During Flower Induction</td>
<td>373</td>
</tr>
<tr>
<td>25.4 Evolution of Circadian Frequencies – Timing of Metabolic Controls</td>
<td>375</td>
</tr>
<tr>
<td>25.5 Circadian Rhythmic Organisation of Energy Metabolism in C. rubrum and the Gating of Photoreceptor (Phytochrome) Action</td>
<td>376</td>
</tr>
<tr>
<td>25.6 Hydraulic–Electrochemical Integration of the Whole Plant</td>
<td>378</td>
</tr>
<tr>
<td>25.7 Electrophysiological Integration of Activity of the Whole Plant – Monitoring of Surface Sum Potentials</td>
<td>380</td>
</tr>
<tr>
<td>25.8 Substitution of Photoperiodic Flower Induction by Electrogenic Flower Induction</td>
<td>385</td>
</tr>
<tr>
<td>25.9 Conclusions and Future Perspectives</td>
<td>386</td>
</tr>
<tr>
<td>References</td>
<td>387</td>
</tr>
</tbody>
</table>

26 Signals and Signalling Pathways in Plant Wound Responses 391
Jeremy D. Rhodes, John F. Thain, David C. Wildon

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1 Introduction</td>
<td>391</td>
</tr>
<tr>
<td>26.2 Patterns of Proteinase Inhibitor Activity and Electrical Activity Following a Variety of Wounding Protocols Applied to Tomato Seedlings</td>
<td>394</td>
</tr>
<tr>
<td>26.3 Conclusions and Future Prospects</td>
<td>400</td>
</tr>
<tr>
<td>References</td>
<td>401</td>
</tr>
</tbody>
</table>

27 Root Exudation and Rhizosphere Biology: Multiple Functions of a Plant Secondary Metabolite 403
Laura G. Perry, Tiffany L. Weir, Balakrishnan Prithiviraj, Mark W. Paschke, Jorge M. Vivanco

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1 Introduction</td>
<td>403</td>
</tr>
<tr>
<td>27.2 C. maculosa Invasion Ecology</td>
<td>405</td>
</tr>
<tr>
<td>27.3 (+)-Catechin, Allelopathy, and Cell Death</td>
<td>407</td>
</tr>
<tr>
<td>27.3.1 Identification of the Allelochemical</td>
<td>408</td>
</tr>
</tbody>
</table>
27.3.2 Catechin Induces Reactive Oxygen Species and Ca\(^{2+}\)-Mediated Cell Death 408
27.3.3 Catechin Exposure Leads to Genome-Wide Changes in Arabidopsis ... 409
27.3.4 (±)-Catechin Is Present at Phytotoxic Concentrations in C. maculosa Soils ... 410
27.3.5 The Role of (±)-Catechin in C. maculosa Invasion 411
27.4 (±)-Catechin and C. maculosa Autoinhibition 412
27.5 (±)-Catechin Effects on Soil Communities 413
27.6 (±)-Catechin, Soil Processes, and Nutrient Availability 415
27.7 Conclusions and Future Prospects 416
References ... 417

28 Communication Between Undamaged Plants by Volatiles: the Role of Allelobiosis
Velemir Ninkovic, Robert Glinwood, Jan Pettersson

28.1 Introduction ... 421
28.1.1 Plant–Plant Communication via Volatiles – a Complex Language ... 423
28.1.2 Experimental Considerations in Plant–Plant Communication ... 423
28.2 Allelobiosis in Barley ... 424
28.2.1 Barley Plant Responses to Plant Volatiles 424
28.2.2 Allelobiosis and Plant Responses 425
28.3 Allelobiosis and Insect Responses 427
28.3.1 Allelobiosis and Aphid Response 428
28.3.2 Allelobiosis and Ladybird Searching Behaviour 430
28.4 Conclusions and Future Prospects 431
References ... 432

Subject Index 435
Communication in Plants
Neuronal Aspects of Plant Life
Baluska, F.; Mancuso, S.; Volkmann, D. (Eds.)
2006, XXIX, 438 p., Hardcover
ISBN: 978-3-540-28475-8