Martine J. Piccart – William C. Wood – Chie-Mien Hung
Lawrence J. Solin – Fatima Cardoso (Eds.)

Breast Cancer and Molecular Medicine
Breast Cancer and Molecular Medicine

With 134 Figures and 118 Tables
Why should you buy another book on breast cancer? Don’t you already have enough breast cancer books on your shelf? As editors, we have attempted to create a different kind of breast cancer book. Although the typical breast cancer book is written as a compendium of diagnoses and treatments, the focus of this book is on the present and future of breast cancer research and treatment, with an emphasis on translational research. Breast cancer treatment is moving increasingly toward laboratory-based, targeted therapies that are tailored to the individual patient. The treatment of breast cancer, and probably all cancers, will likely soon be practiced in this radically different fashion. The tsunami wave of laboratory and translational research that is already under way will soon alter the management of breast cancer in fundamental ways, and in fact, is already influencing the way in which we think about treating breast cancer patients and performing research.

Research into clinical, laboratory, and translational aspects of breast cancer has improved enormously our ability to treat and cure patients with this disease. Population-based data (for example, from the USA and the UK) document a substantial decrease in the mortality from breast cancer in the last decade, notwithstanding an increase in the incidence of breast cancer detection, attesting to the benefit in human terms from this research. We believe that this downward trend in mortality is only the beginning.

What makes this book unique is that it considers a wide range of relevant and exciting areas of clinical, translational, and basic research for their potential for clinical application today as well as for transforming future breast cancer treatment. If the history of scientific discovery is any guide, then some, but not all, of these research areas will prove valuable for patient care, and the remainder will fall by the wayside. However, no one can predict today which of these research areas will have the most impact on treating patients in the years to come.
The last 25 years of clinical research have been characterized by large, randomized trials that have led to improved outcomes for populations of women. Some of these trials have addressed differing treatment concepts, and others, different regimens of similar therapy. Overviews and meta-analyses have uncovered major trends. However, for any given trial, only some of the patients will derive the benefit from treatment that is nevertheless applied to the overall group of patients. A limitation of comparing large populations of patients is that some subgroups may be too small to be properly evaluated. While such large clinical trials have improved demonstrably the outcome for the overall group, this approach may do so by overtreating some patients while undertreating others.

With the growing recognition of the large heterogeneity of breast cancer patients, breast cancer treatment is becoming increasingly individualized. The observation that each patient is unique, recognized clinically for decades, is now being confirmed by the genetic analysis of individual tumor DNA specimens. The genetic individuality of tumors strongly supports the clinical trend toward increasingly individualized treatment for each patient.

Today, laboratory-based research is expanding, with the potential to translate into clinically valuable improvements. The most basic and elemental processes are understanding cancer genes, how these genes work, the products and mechanisms of altered cellular functions, and the relationship between cancer cells and normal cells. Laboratory research is fueling our understanding of cancer cell biology. With this research come insights into potential targets to exploit and new targeted therapies to employ. Individually designed combinations of therapies will soon become the norm, and currently available antineoplastic treatments (chemotherapeutic, hormonal, biologic, radiotherapeutic, and surgical) will be used more strategically. Today's translational research presages a new era in which therapies may ultimately be tailored to the most elemental basis of the individual tumor in the individual patient.

Historically, classifying patients into broad groups has facilitated the development of treatment guidelines. "Lumping" patients into broad categories of disease (for example, based on nodal positivity, stage, or hormone receptor status) and "splitting" patients based on individual patient and tumor characteristics both play an important role in the conceptual framework for managing breast cancer patients. For example, lumping patients into so-called early-stage disease guides local-regional management of breast-conservation treatment versus mastec-
tomy, whereas lumping patients into so-called locally advanced breast cancer guides the treatment decision toward neoadjuvant chemotherapy. Nonetheless, the paradigm of broadly grouping patients to guide treatment decisions may soon undergo radical change.

Our increasingly sophisticated understanding of breast cancer is forcing us to recognize substantial clinical heterogeneity, even within predefined patient groups, and to reevaluate our concepts of patient management strategies. Thus, splitting or separating the patients into smaller subgroups of patients has become a widely accepted practice, and tailoring treatment in this fashion has emerged as a rational treatment strategy. Translational research has become the driving factor for much of this change in our approach toward treatment strategies. Furthermore, as the basic principles of cancer biology drive translational efforts into more effective clinical treatment strategies, clinical problems are also driving laboratory-based research to solve these problems.

Many examples could be given to demonstrate translational research findings that have already altered clinical practice today. The use of tamoxifen as a hormonal agent represents a major shift in the systemic management of breast cancer patients, and innumerable women have been cured through the use of this very well tolerated drug. However, the most effective clinical use of tamoxifen takes into account the heterogeneity of patient presentations. After research studies demonstrated the importance of estrogen and progesterone receptors, clinicians were able to determine the appropriate subgroup of tumors (hormone receptor positive) that should be treated with adjuvant tamoxifen. In this way, tamoxifen became the first systemic agent used for targeted breast cancer treatment.

Although uncommon, the clinically observed side effects of tamoxifen can potentially be severe, even life-threatening, and have consequently stimulated laboratory research into developing more specific agents with fewer side effects. Two major groups of new agents have been developed: (1) the selective estrogen receptor modulators (SERMs), and (2) the aromatase inhibitors (AIs). SERMs and AIs may have the same, or an even higher, benefit as tamoxifen for preventing recurrence of disease, but with a lower risk of side effects. These agents are also not without side effects, and so even newer agents continue to be developed for clinical testing.

The AIs have been evaluated in several studies and are challenging tamoxifen as the gold standard both for metastatic disease and in the adjuvant setting. The Arimidex, Tamoxifen Alone or in Combination (ATAC) trial demonstrated an improved dis-
ease-free survival (DFS) and toxicity profile for women treated with anastrozole. The National Cancer Institute of Canada MA 17 trial reported an improved DFS for women receiving 5 years of letrozole after completing a 5-year course of tamoxifen, raising the hypothesis that a prolonged duration of more than 5 years of adjuvant hormonal therapy may be beneficial. In the Intergroup Exemestane Study, an improved DFS was found for the combination of tamoxifen followed by exemestane for a total of 5 years compared to tamoxifen alone for 5 years.

The hereditary breast cancer story is another example of a clinical observation driving translational research. In the not too distant past, it was commonly observed that “breast cancer runs in families.” The power of this clinical observation was channeled into the laboratory finding of specific breast cancer genes associated with hereditary breast cancer. To date, two major genes (BRCA1 and BRCA2), as well as other genes, have been associated with an increased risk of developing breast cancer. Several hereditary breast cancer syndromes have been identified, and the potential exists for identifying additional genes responsible for these breast cancer syndromes.

The ability to use rapid and reliable testing to identify women with specific BRCA mutations has promoted the development of improved management strategies for these patients. The available options today for such patients include a number of tailored strategies, such as prophylactic surgery (for example, bilateral oophorectomies or bilateral mastectomies), systemic agents for breast cancer prevention (for example, tamoxifen), or heightened surveillance (for example, breast cancer screening using magnetic resonance imaging, MRI, in addition to conventional mammography).

The impact of research on clinical practice is not limited to systemic therapies. Many research developments have influenced local-regional treatments and their integration with systemic therapies. For example, improved imaging allows for more accurate surgery. MRI has become part of routine clinical practice, as it is complementary to conventional imaging studies. MRI of the breast may have a role in any number of clinical scenarios, such as improving the definition of the tumor volume, monitoring the response to neoadjuvant chemotherapy for locally advanced breast cancer, more accurate staging of the breast for potential candidates for breast-conservation treatment with early stage disease, and differentiating scar from local recurrence in follow-up after breast-conservation treatment.

The integration of computed tomography (CT) and MRI into radiation oncology treatment planning has become routine in
clinical practice. Furthermore, the integration of high-speed computers has facilitated the delivery of targeted radiation treatment that can increase the radiation dose to the tumor (or target) and decrease the dose to normal tissues, with a corresponding reduction in toxicity. The ability to cover the target volume (for example, the intact breast) while omitting critical normal tissues (for example, the heart and coronary vessels) maintains tumor control, but without the late toxicities that were seen in older studies. One can easily envision even further refinements in local-regional treatment that incorporate the ongoing developments in radiologic imaging.

The future of translational research cannot be predicted. Many, but not all, of the promising strategies explored in this textbook will prove clinically valuable in the years to come. While some of these approaches have already reached the clinic and have made a tremendous impact on patient management today, many strategies, although highly promising, remain to show clinical utility. “Bench to bedside” and “bedside to bench” research for breast cancer is an exciting dynamic that has only just begun to yield valuable results.
Contents

1 Role of Modeling in Pharmacotherapeutics

1.1 Introduction .. 3
1.2 The Skipper-Schabel Model and its Relevance 4
1.3 Gompertzian Growth and the Norton-Simon Hypothesis ... 7
1.4 The Impact Of Sequential Chemotherapy 11
1.5 Dose Size .. 15
1.6 Scheduling: What about Dose Density? 16
1.7 Sequential Therapy and Dose Density in the Clinic ... 17
1.8 Some Cautions Regarding Dose Density 20
1.9 Gompertzian Growth is Biologically Driven 23

2 PET and Nuclear Medicine Imaging of the Breast

2.1 Introduction .. 31
2.2 \(^{18}\text{FDG-PET} \) ... 31
2.3 Primary Breast Cancer Detection 32
2.4 Axillary Lymph Nodes 32
2.5 Metastatic Disease and Staging 33
2.6 Locally Advanced Breast Cancer: Response to Chemotherapy .. 34
2.7 Prognostic Assessment 34
2.8 Reimbursement ... 35
2.9 \(^{99\text{mTc}}\text{-Sestamibi and }^{99\text{mTc}}\text{-Tetrofosmin} \) ... 35
2.10 Dedicated Devices for Nuclear Medicine Breast Imaging .. 36
2.11 Summary .. 38
Contents

3 Functional Radiologic Imaging in Breast Cancer

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Magnetic Resonance Imaging</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Nuclear Medicine</td>
<td>48</td>
</tr>
<tr>
<td>3.3.1</td>
<td>18F-Fluorodeoxyglucose</td>
<td>48</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Amino Acid Metabolism</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>L-$[1-{^{13}}$C]-Methionine</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>L-$[1-{^{13}}$C]-Tyrosine</td>
<td>54</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Matrix Metalloproteinase Inhibitor Radiotracer</td>
<td>55</td>
</tr>
<tr>
<td>3.3.4</td>
<td>99mTc-rh-Annexin V Uptake as an Indicator of Apoptosis</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>Monitoring Resistance to Chemotherapy</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Tumor Hypoxia</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusion</td>
<td>57</td>
</tr>
</tbody>
</table>

4 Prevention of Breast Cancer

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Surgery For Breast Cancer Risk Reduction</td>
<td>63</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Prophylactic Mastectomy</td>
<td>63</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Prophylactic Oophorectomy</td>
<td>66</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Selection for Prophylactic Surgery</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>Chemoprevention of Breast Cancer</td>
<td>69</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Scientific Basis for the Prevention of Estrogen-Receptor-Positive Breast Cancer</td>
<td>69</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Clinical Prevention of Estrogen-Receptor-Positive Breast Cancer: Tamoxifen</td>
<td>70</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>The NSABP P1 Trial</td>
<td>70</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>The Royal Marsden Prevention Trial</td>
<td>74</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>The Italian Prevention Trial</td>
<td>74</td>
</tr>
<tr>
<td>4.3.2.4</td>
<td>The IBIS-I Trial</td>
<td>75</td>
</tr>
<tr>
<td>4.3.2.5</td>
<td>Overview of Studies</td>
<td>76</td>
</tr>
<tr>
<td>4.3.2.6</td>
<td>Identifying Candidates for Tamoxifen Chemoprevention</td>
<td>76</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Clinical Prevention of ER-Positive Breast Cancer: Raloxifene</td>
<td>79</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Clinical Prevention of ER-Positive Cancer: Aromatase Inhibitors</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>Prevention of ER-Negative Breast Cancer</td>
<td>83</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Retinoids</td>
<td>83</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Cyclooxygenase-2 Inhibitors</td>
<td>84</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Epidermal Growth Factor Receptor Inhibitors</td>
<td>85</td>
</tr>
</tbody>
</table>
4.5 Current Progress and Future Challenges 86

5 **DCIS: Pathology and Molecular Markers** 99

5.1 Introduction .. 99
5.2 Histological Classification 101
5.2.1 Ductal Carcinoma In Situ 101
5.2.2 Intraductal Epithelial Proliferations 104
5.3 Genetic Alterations 104
5.3.1 Oncogenes 105
5.3.1.1 Amplification of the HER-2 Gene is Frequent in DCIS ... 106
5.3.1.2 Cyclin D1 Protein Overexpression in the Precursors of Invasive Breast Cancer 107
5.3.1.3 C-MYC Gene Amplification: Involved in the Progression of DCIS to Invasion? 107
5.3.2 Tumor Suppressor Genes 108
5.3.2.1 Inactivation of the p53 Gene in DCIS 108
5.3.2.2 E-Cadherin Gene Inactivation in LCIS but not in DCIS ... 109
5.3.2.3 Other Tumor Suppressor Genes? 109
5.3.3 Genetic Alterations Detected by LOH and CGH .. 110
5.4 A Multistep Model for Breast Carcinogenesis 112
5.5 Discussion and Future Prospects 113

6 **Ductal Carcinoma In Situ: a Modern Approach to Patient Management** 125

6.1 Introduction .. 125
6.2 Treatment Options 126
6.2.1 Local Treatment Options 126
6.2.1.1 Lumpectomy or Wide Excision Alone With or Without RT .. 126
6.2.1.2 Mastectomy 127
6.2.2 Treatment Options for Hormone-Responsive DCIS ... 127
6.3 Biomarkers of Disease and Outcome 128
6.4 Preventing Contralateral Breast Cancer 130
6.5 Decision-Making Tools for Treatment of Ipsilateral DCIS ... 131
6.6 Novel Therapies for Prevention 133
6.7 Conclusions 134
7 Ductal Carcinoma In Situ:
 Systemic Treatment 137

7.1 Introduction 137
7.2 Molecular Characteristics of DCIS 138
7.3 Systemic Treatment of HR-Positive DCIS .. 141
7.4 Tamoxifen Treatment for DCIS 141
7.4.1 ER status of DCIS in NSABP B-24 143
7.4.2 The United Kingdom, Australia, and New
 Zealand DCIS Trial 144
7.5 Aromatase Inhibitors as a Treatment for DCIS .. 146
7.6 Treatment of Hormone-Independent DCIS 148
7.7 Promising Novel Therapies for Hormone-
 Independent DCIS 149
7.7.1 Cyclooxygenase-2 Inhibitors 149
7.7.2 Inhibition of the EGFR Family in DCIS 150
7.8 Future Directions In Treating DCIS 151

8 Tailored Surgery for Early Breast
 Cancer: Surgical Techniques 161

8.1 Skin-Sparing Mastectomy 161
8.1.2 Anatomical Considerations 161
8.1.3 Oncological Considerations 163
8.1.4 Technical Considerations 163
8.1.4.1 Patient Selection 163
8.1.4.2 Types of Skin-Sparing Mastectomy 165
8.1.4.3 Skin-flap Elevation 166
8.1.4.4 Immediate Reconstruction 168
8.1.4.5 Complications 172
8.2 Oncoplastic Surgery of the Breast 172
8.2.1 Local Tissue 173
8.2.2 Breast Reshaping 176
8.2.3 Distant Flaps 177

9 Tailored Surgery for Early Breast
 Cancer: Biological Aspects 183

9.1 Introduction 183
9.2 Molecular Biology and Behavior of the Cancer
 in the Breast 184
12 Tailored Radiotherapy for Breast Cancer Stages I and II: Technical Aspects . . 235

12.1 Introduction ... 235
12.2 Wide Excision Alone Trials 235
12.3 Studies Addressing the Benefit of a Tumor-Bed Boost after Whole-Breast RT 236
12.4 Tamoxifen as a Substitute for RT After Lumpectomy .. 238
12.5 Accelerated, Whole-Breast RT Fractionation Schedules 238
12.6 Accelerated, Partial-Breast Irradiation 239
12.6.1 Catheter-Based Interstitial Brachytherapy 239
12.6.2 MammoSite Balloon Catheter .. 241
12.6.3 Three-Dimensional Conformal External-Beam Irradiation 242
12.7 Three-Dimensional Conformal PBI Technique .. 243
12.7.1 Simulation and Treatment Planning .. 243
12.7.2 Dose–Volume Constraint Guidelines .. 244
12.8 Three-dimensional Treatment Planning and Intensity-Modulated RT .. 245
12.8.1 Virtual Simulation/3D Treatment Planning .. 245
12.8.2 Intensity-Modulated RT .. 246
12.8.2.1 Whole-Breast IMRT .. 246
12.8.2.2 Regional Nodal IMRT/Breath-Hold Techniques .. 249
12.9 Conclusions .. 252

13 Breast Cancer Management in the Era of Molecular Medicine: Tailored Radiotherapy – Clinical and Biological Aspects .. 257

13.1 Overview .. 257
13.2 Introduction .. 258
13.3 Hormone Receptors .. 259
13.4 Her2/neu Expression .. 261
13.5 P53 Expression .. 264
13.6 Proliferative Markers .. 266
13.7 Other Selected Molecular Markers .. 267
13.8 Genetic Factors and Local-Regional Management of Breast Cancer .. 268
13.9 Conclusion .. 273
14 Early Breast Cancer (Stage I and II): Tailored Radiotherapy for Very Young Women

14.1 Introduction ... 279
14.2 Age and Locoregional Recurrences 279
14.3 Clinical, Pathological, and Biological Features Associated with Breast Cancer in Very Young Patients .. 281
14.4 Respective Influence of Young Age and Other Associated Factors on the Risk of Breast Recurrence 283
14.5 Tailoring Radiotherapy in Young Patients 284
14.5.1 Prediction of Radiation Sensitivity and Curability .. 284
14.5.2 Modulation of Response to Radiotherapy 285
14.5.2.1 Radiation Dosage ... 285
14.5.2.2 Biological Response Modifiers and Radiotherapy .. 286
14.6 Conclusions ... 286

15 The Elderly and Breast Cancer Radiotherapy 291

15.1 Introduction ... 291
15.2 Effects of Age .. 291
15.2.1 Life Expectancy and Comorbidity 291
15.2.2 Biology .. 292
15.2.3 Psychology .. 293
15.3 Treatment .. 294
15.3.1 Breast-Conservation Therapy 294
15.4 Newer Techniques ... 295
15.4.1 Scheduling of Radiation Therapy and Other Adjuvant Treatment 297
15.4.2 Postmastectomy Radiotherapy 298
15.5 Palliative Radiotherapy ... 299
15.6 Summary ... 300

16 Early Breast Cancer (Stage I and Stage II): Tailored Systemic Therapy for Endocrine-Resistant Breast Cancer 309

16.1 Introduction ... 309
16.2 The Use of Molecular Markers to Identify Low-Risk Endocrine-Resistant Disease 309
16.2.1 Cellular Markers of Metastatic Potential 312
 16.2.1.1 Tumor Grade .. 312
 16.2.1.2 S-Phase Fraction 313
 16.2.1.3 [3H]-Thymidine Labeling Index 313
16.2.2 Molecular Markers of Metastatic Potential 314
 16.2.2.1 HER-2 ... 314
 16.2.2.2 Cyclin E .. 314
 16.2.2.3 Other Cell Cycle Regulators 315
 16.2.2.4 Urokinase-Type Plasminogen Activator and Plasminogen Activator Inhibitor-1 315
16.2.3 Genetic Markers of Metastatic Potential 315
 16.2.3.1 The “Amsterdam” Profile 315
16.2.4 Discussion ... 316
16.3 The Use of Molecular Markers to Select Adjuvant Chemotherapy 316
 16.3.1 HER-2, Topoisomerase-IIα and Anthracyclines 318
 16.3.2 Thymidylate Synthase and 5-Fluorouracil 319
 16.3.3 Tubulin Polymorphisms and Taxanes 319
 16.3.4 Discussion ... 320

17 Early Breast Cancer (Stage I and Stage II): Tailored Systemic Therapy for Endocrine-Responsive Breast Cancer ... 327
 17.1 Introduction ... 327
 17.2 Tailored Endocrine Therapy 327
 17.2.1 Predictive and Prognostic Factors for Endocrine Therapy 328
 17.3 Tailored Chemotherapy 333
 17.4 Treatment Summary 339
 17.5 Future Directions 342

18 Tailored Therapy for Breast Cancer in Very Young Women 349
 18.1 Introduction ... 349
 18.2 Incidence and Prevalence 349
 18.3 Age as a Prognostic Factor in Breast Cancer 350
 18.3.1 Breast Cancer Outcomes by Age: Population Studies 350
 18.3.1.1 The American Experience 350
 18.3.1.2 The European Experience 351
18.3.2 Breast Cancer Outcomes by Age: Institutional Data 351
 18.3.2.1 The American Experience .. 351
 18.3.2.2 The European Experience 352
18.3.3 Breast Cancer Outcomes by Age: Cooperative Group Studies/Tumor Banks 352
18.4 Prognostic Factors in the Young ... 354
 18.4.1 Stage at Presentation ... 354
 18.4.2 Tumor Size .. 354
 18.4.3 Nodal Status .. 355
 18.4.4 Grade .. 355
 18.4.5 HER2-neu (c-erbB-2) Expression 355
 18.4.6 Overexpression of p53 ... 355
 18.4.7 Hormone Receptor Status ... 356
 18.4.8 S-phase and Ki67 Expression 356
 18.4.9 Lymphovascular Invasion ... 356
 18.4.10 Novel Prognostics: Gene Expression Profiling 356
18.5 Age as an Independent Prognostic Factor 357
18.6 Treatment of Breast Cancer in Young Women 359
 18.6.1 Consensus Guidelines .. 359
 18.6.2 Chemotherapy ... 359
 18.6.3 Endocrine Therapy .. 361
 18.6.4 Chemoendocrine Therapy ... 362
 18.6.5 Radiation Therapy .. 362
18.7 Special Considerations in the Young ... 363
 18.7.1 Genetic Predisposition .. 363
 18.7.2 Quality of Life ... 364
 18.7.3 Premature Menopause ... 364
 18.7.4 Breast Cancer Diagnosed during Pregnancy 365
 18.7.5 Breast Cancer and Subsequent Fertility 365
18.8 Conclusions and Caveats Regarding Tailored Therapy in Younger Women 366

19 Tailored Systemic Therapy for the Elderly Woman 375
 19.1 Epidemiology ... 375
 19.2 Tumor Biology ... 375
 19.4 Life Expectancy for Older Women 376
 19.5 Comorbidities- Prevalence and Impact on Decision Making 377
 19.6 HER-2/neu Testing in Older Women with Early Stage Breast Cancer 379
 19.7 Adjuvant Systemic Therapy .. 380
19.7.1 Hormonal Therapy .. 380
19.7.1.1 Tamoxifen .. 380
19.7.1.2 Aromatase Inhibitors: Arimidex, Letrozole, and Exemestane .. 382
19.7.2 Primary Endocrine Management 384
19.7.3 Chemotherapy .. 384
19.7.4 Chemotherapy in Addition to Endocrine Therapy in the Adjuvant Setting 386
19.8 Neoadjuvant Therapy in Early Stage Disease ... 388
19.9 Integrating the Data for Older Women into an Individualized Approach to Adjuvant Systemic Therapy .. 389
19.10 Older Patients and Clinical Trials 393

20 Locoregional Therapy Following Neoadjuvant Chemotherapy: an Evolving Paradigm of Treatment Individualization 401

20.1 Introduction .. 401
20.2 Appropriate Tumor Assessment Before, During, and After Neoadjuvant Chemotherapy and its Effects on Locoregional Management 402
20.2.1 Use of Core Needle Biopsy vs Fine-Needle Aspiration for Initial Diagnosis and Biomarker Assessment .. 402
20.2.2 Clinical Assessment of the Extent of Primary Breast Tumor Before, During, and After Neoadjuvant Chemotherapy 403
20.2.3 Identifying the Exact Location of the Tumor Bed in Cases of Clinical and/or Pathologic Complete Response .. 405
20.2.4 Clinical and Radiologic Assessment of Axillary Nodal Status Before Neoadjuvant Chemotherapy 406
20.3 Locoregional Therapy Considerations Following Neoadjuvant Chemotherapy 407
20.3.1 Surgical Management of the Primary Breast Tumor .. 407
20.3.2 Ipsilateral Breast Tumor Recurrence Following Neoadjuvant Chemotherapy and Breast-Conserving Surgery .. 408
20.3.3 Breast Reconstruction after Neoadjuvant Chemotherapy and Mastectomy 409
20.3.4 Surgical Management of Axillary Nodes 409
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.3.5</td>
<td>Issues Regarding Locoregional Radiotherapy Following Neoadjuvant Chemotherapy and Surgery</td>
<td>414</td>
</tr>
<tr>
<td>20.4</td>
<td>Future Directions in Locoregional Therapy after Neoadjuvant Chemotherapy</td>
<td>415</td>
</tr>
<tr>
<td>21</td>
<td>Medical Therapy of Locally Advanced Breast Cancer</td>
<td>427</td>
</tr>
<tr>
<td>21.1</td>
<td>Introduction</td>
<td>427</td>
</tr>
<tr>
<td>21.2</td>
<td>Diagnosis</td>
<td>427</td>
</tr>
<tr>
<td>21.3</td>
<td>Prognostic and Predictive Factors</td>
<td>428</td>
</tr>
<tr>
<td>21.4</td>
<td>Therapy</td>
<td>429</td>
</tr>
<tr>
<td>21.4.1</td>
<td>Local Therapy</td>
<td>429</td>
</tr>
<tr>
<td>21.4.2</td>
<td>Medical Therapy</td>
<td>430</td>
</tr>
<tr>
<td>21.5</td>
<td>Inflammatory Breast Cancer</td>
<td>439</td>
</tr>
<tr>
<td>21.5.1</td>
<td>Therapy for Inflammatory Breast Cancer</td>
<td>439</td>
</tr>
<tr>
<td>21.6</td>
<td>Conclusion</td>
<td>440</td>
</tr>
<tr>
<td>22</td>
<td>Metastatic Breast Cancer: Tailored Endocrine Therapy for Premenopausal Women</td>
<td>451</td>
</tr>
<tr>
<td>22.1</td>
<td>Introduction</td>
<td>451</td>
</tr>
<tr>
<td>22.2</td>
<td>Ovarian Ablation for Treatment of Metastatic Breast Cancer</td>
<td>451</td>
</tr>
<tr>
<td>22.2.1</td>
<td>Background</td>
<td>451</td>
</tr>
<tr>
<td>22.2.2</td>
<td>Methods of Ovarian Ablation</td>
<td>452</td>
</tr>
<tr>
<td>22.2.2.1</td>
<td>Oophorectomy</td>
<td>452</td>
</tr>
<tr>
<td>22.2.2.2</td>
<td>Ovarian Irradiation</td>
<td>452</td>
</tr>
<tr>
<td>22.2.2.3</td>
<td>Ovarian Suppression with LHRH Agonists</td>
<td>452</td>
</tr>
<tr>
<td>22.2.3</td>
<td>Comparison of Methods of Ovarian Ablation</td>
<td>453</td>
</tr>
<tr>
<td>22.3</td>
<td>Tamoxifen for Treatment of Metastatic Breast Cancer</td>
<td>454</td>
</tr>
<tr>
<td>22.3.1</td>
<td>Background</td>
<td>454</td>
</tr>
<tr>
<td>22.3.2</td>
<td>Tamoxifen Withdrawal</td>
<td>455</td>
</tr>
<tr>
<td>22.4</td>
<td>Tamoxifen Compared to Ovarian Ablation or Suppression</td>
<td>455</td>
</tr>
<tr>
<td>22.5</td>
<td>Combined Endocrine Therapy with Ovarian Suppression and Tamoxifen</td>
<td>456</td>
</tr>
<tr>
<td>22.6</td>
<td>Aromatase Inhibitors for Treatment of Metastatic Breast Cancer</td>
<td>457</td>
</tr>
<tr>
<td>22.6.1</td>
<td>Background</td>
<td>457</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>22.6.2</td>
<td>Combined Endocrine Therapy with Selective Aromatase Inhibitors and LHRH Agonists</td>
<td>458</td>
</tr>
<tr>
<td>22.7</td>
<td>Sex Steroids for Treatment of Metastatic Breast Cancer</td>
<td>458</td>
</tr>
<tr>
<td>22.8</td>
<td>Future Considerations</td>
<td>459</td>
</tr>
<tr>
<td>22.8.1</td>
<td>Use of HER2/neu Status to Select Therapy</td>
<td>459</td>
</tr>
<tr>
<td>22.9</td>
<td>Conclusion</td>
<td>459</td>
</tr>
<tr>
<td>23</td>
<td>Metastatic Breast Cancer: Tailored Endocrine Therapy for Postmenopausal Women</td>
<td>465</td>
</tr>
<tr>
<td>23.1</td>
<td>Introduction</td>
<td>465</td>
</tr>
<tr>
<td>23.2</td>
<td>Tailored Treatment Approaches to Endocrine Therapy for Breast Cancer</td>
<td>465</td>
</tr>
<tr>
<td>23.3</td>
<td>Efficacy Issues in Tailored Endocrine Therapy for Advanced Disease</td>
<td>466</td>
</tr>
<tr>
<td>23.4</td>
<td>Selective Estrogen-Receptor Downregulators</td>
<td>469</td>
</tr>
<tr>
<td>23.5</td>
<td>High-Dose Estrogen</td>
<td>470</td>
</tr>
<tr>
<td>23.6</td>
<td>The Use of HER2 to Tailor Endocrine Therapy for Advanced Disease?</td>
<td>470</td>
</tr>
<tr>
<td>23.7</td>
<td>Combination Therapies with Signal Transduction Inhibitors</td>
<td>471</td>
</tr>
<tr>
<td>23.8</td>
<td>New Technologies to Assess the Endocrine Therapy Resistance Problem</td>
<td>472</td>
</tr>
<tr>
<td>23.9</td>
<td>Oncotype DX</td>
<td>472</td>
</tr>
<tr>
<td>23.10</td>
<td>Conclusion</td>
<td>474</td>
</tr>
<tr>
<td>24</td>
<td>Metastatic Breast Cancer: Tailored Chemotherapy for the Elderly Woman</td>
<td>479</td>
</tr>
<tr>
<td>24.1</td>
<td>Introduction</td>
<td>479</td>
</tr>
<tr>
<td>24.2</td>
<td>Clinical Definition of Age</td>
<td>479</td>
</tr>
<tr>
<td>24.3</td>
<td>Assessment of the Elderly Patient with Cancer</td>
<td>481</td>
</tr>
<tr>
<td>24.4</td>
<td>Cancer Chemotherapy in the Elderly Patient</td>
<td>484</td>
</tr>
<tr>
<td>24.4.1</td>
<td>Pharmacokinetics</td>
<td>484</td>
</tr>
<tr>
<td>24.4.1.1</td>
<td>Absorption</td>
<td>484</td>
</tr>
<tr>
<td>24.4.1.2</td>
<td>Distribution</td>
<td>485</td>
</tr>
<tr>
<td>24.4.1.3</td>
<td>Metabolism</td>
<td>485</td>
</tr>
<tr>
<td>24.4.1.4</td>
<td>Excretion</td>
<td>485</td>
</tr>
<tr>
<td>24.4.2</td>
<td>Pharmacodynamics in the Elderly Patient</td>
<td>489</td>
</tr>
<tr>
<td>24.4.2.1</td>
<td>Myelotoxicity</td>
<td>489</td>
</tr>
</tbody>
</table>
24.4.2.2 Mucositis .. 490
24.4.2.3 Cardiotoxicity 490
24.4.2.4 Neurotoxicity 491
24.4.3 Chemotherapy Regimens in the Elderly 491
 24.4.3.1 The Anthracyclines 491
 24.4.3.2 The Taxanes 493
 24.4.3.3 Vinorelbine 494
 24.4.3.4 Capecitabine 495
 24.4.3.5 Gemcitabine 495
24.5 Clinical Trials 496
24.6 Conclusion ... 496

25 Treatment of Brain Metastases from Breast Cancer 505
 25.1 Clinical Features 505
 25.2 Radiosurgery: Definition 507
 25.3 Treatment Algorithm 508
 25.4 Radiobiological and Technical Principles
 for Radiation Treatment 510
 25.4.1 LINAC .. 510
 25.4.2 Gamma Knife Radiosurgery 511
 25.4.3 Proton-Beam Therapy 512
 25.5 Toxicity ... 513
 25.6 Institutional Experience 514
 25.6.1 Patient and Brain Metastasis Characteristics .. 514
 25.6.2 Treatment Characteristics 515
 25.6.3 Results ... 515
 25.6.3.1 Control of Brain Metastases 515
 25.6.3.2 Survival 515
 25.6.4 Discussion 518
 25.6.4.1 Local Recurrence 518
 25.6.4.2 Survival 518
 25.7 Conclusions 521

26 Surgical Management of Breast Cancer Liver Metastases 525
 26.1 Introduction .. 525
 26.2 Surgical Management of Breast Cancer Liver
 Metastases: Rationale 525
 26.2.1 Metastases from Breast Cancer are Frequently
 Isolated to the Liver 525
26.2.2 Metastatic Deposits in the Liver may Give Rise to Further Dissemination to Other Organs 526
26.2.3 Cure of Metastatic Breast Cancer is Unusual Using Chemotherapy Alone 526
26.2.4 Liver Metastases are Particularly Resistant to Most Hormonal and Chemotherapeutic Agents .. 527
26.2.5 One Alternative is High-Dose Chemotherapy, which has Considerable Attendant Morbidity and Mortality 527
26.2.6 Hepatic Resection can be Performed with Mortality Rates Well Below 2% 528
26.2.7 New Models of the Development of Breast Cancer Metastases Suggest that Achievement of a Complete Response is Most Critical for Long-Term Control of the Disease 528
26.3 Surgical Management of Breast Cancer Liver Metastases: Options .. 529
26.3.1 Resection of Breast Cancer Liver Metastases: the Concept of “Adjuvant Surgery” 529
26.3.2 Radiofrequency Ablation ... 534
26.4 Conclusions ... 538

27 Individualization of Bisphosphonate Therapy .. 545
27.1 Introduction .. 545
27.2 Breast-Cancer-Induced Hypercalcemia 547
27.3 Metastatic Bone Pain .. 549
27.4 Prevention of the Complications of Bone Metastases ... 550
27.5 Prevention of Bone Metastases 556
27.6 Prevention of Cancer-Treatment-Induced Bone Loss .. 557
27.7 Conclusions and Perspectives 559

28 Breast Cancer Metastases to the Eye 565
28.1 Introduction ... 565
28.2 Diagnosis and Treatment .. 565
28.3 Treatment and Prognosis .. 566
29 Organ-Specific Approaches: Pain Management 569

29.1 Introduction .. 569
29.2 Anatomy .. 570
29.3 Modulation Within the Dorsal Horn 571
29.3.1 Antinociceptive Receptors and Ligands 572
29.3.2 Pronociceptive Receptors and Neurotransmitters 573
29.3.3 Nociceptin and “Orphan-Like” Opioid Receptors (ORL) .. 575
29.3.4 Protein Kinases .. 575
29.3.5 Nitric Oxide Synthase and Prostaglandins 575
29.3.6 Phospholipase C ... 575
29.3.7 Cholecystokinin ... 576
29.3.8 Neuroplasticity and Gene Response 576
29.3.9 Clinical Implications 577
29.4 Opioid Receptors .. 577
29.4.1 Opioid Receptor Desensitization and Internalization 579
29.4.2 Opioid Receptor Intrinsic Efficacy 580
29.4.3 Opioid Agonists, Partial Agonists, Antagonists, and Inverse Opioid Agonists 580
29.4.4 G Proteins and Opioid Receptors 581
29.4.5 Regulators of G-Protein Activity Signaling 581
29.4.6 Adenylyl Cyclase .. 581
29.4.7 Summary .. 582
29.5 Supraspinal Opioid Responses 582
29.5.1 Neurotransmitters and Receptors of Descending Bulbospinal Tracts 582
29.5.2 GABA and Bulbospinal Tracts 583
29.5.3 Facilitation of Pain Through Spinobulbar Pathways 584
29.5.4 Opioid-Facilitated Pain 586
29.5.5 Clinical Significance 586
29.6 Conclusion ... 587

30 Genomic and Molecular Classification of Breast Cancer 595

30.1 Introduction .. 595
30.2 Microarray technique ... 596
30.3 A New Approach to Breast Cancer Classification 598
30.4 Prediction of Metastatic Potential 604
30.5 Classification of Hereditary and Familial Breast Cancer .. 610
30.6 Gene Expression and Response to Treatment ... 612
30.7 Concluding Remarks and Perspectives ... 615

31 Applications of Proteomics to Clinical Questions in Breast Cancer 623
31.1 Introduction ... 623
31.2 The Proteomic Pipeline: a Primer on the Process ... 624
31.3 Proteomics in Signaling Studies of Breast Cancer ... 629
31.4 Proteomics in Biomarker Discovery .. 631
31.5 Proteomics in the Treatment of Breast Cancer .. 633
31.6 Conclusion .. 636

32 Targeting the HER Family of Receptors in the Treatment of Advanced Breast Cancer ... 643
32.1 Targeting the HER Family of Receptors: Rationale and Strategies 643
32.2 Trastuzumab .. 646
32.2.1 Mechanism of Action/Resistance ... 646
32.2.2 Early and Pivotal Studies with Trastuzumab ... 647
32.2.3 Newer Chemotherapy–Trastuzumab Combination Trials ... 649
32.2.3.1 Taxanes + Trastuzumab ... 649
32.2.3.2 Vinorelbine + Trastuzumab .. 652
32.2.3.3 Anthracycline and Trastuzumab-Based Combinations .. 653
32.2.3.4 Other Trastuzumab-Based Chemotherapy-Containing Combinations 654
32.2.5 Trastuzumab in Combination with Hormonal Therapy ... 655
32.2.4 Present and Future of Trastuzumab .. 656
32.3 HER Dimerization Inhibitors (HDI): Pertuzumab ... 658
32.4 Anti-HER Low-Molecular-Weight Tyrosine Kinase Inhibitors .. 658
32.4.1 Integration of Anti-HER Therapies with Other Molecular-Targeted Therapies 660
32.4.1.1 Combination of Antireceptor Therapies ... 661
32.4.1.2 Combination of Antireceptor Therapy and Receptor-Downstream Signaling Molecules 662
32.4.1.3 Combination of Antireceptor Therapy and Agents Interfering with Other Essential Components Responsible for the Malignant Phenotype 662

33 Biological Therapies for Metastatic Breast Cancer: Antiangiogenesis 671

33.1 Introduction 671
33.2 Tumor Vasculature During Angiogenesis 671
33.2.1 Endothelial Proliferation 671
33.2.2 Intussusception 672
33.2.3 Endothelial Precursors 672
33.2.4 Vessel Co-option 672
33.2.5 Lymphangiogenesis 673
33.2.6 Vasculogenic Mimicry 673
33.3 Angiogenesis and Breast Carcinogenesis 673
33.3.1 Estrogen Effects 674
33.3.2 Invasive Cancer and Metastases 675
33.4 Angiogenic Molecules as Targets for Cancer Treatment 677
33.4.1 Vascular Targeting and Antiangiogenesis 678
33.4.2 VEGF Antagonism 681
33.4.3 Vascular Targeting 683
33.4.4 Angiopoietins 683
33.4.5 Thymidine Phosphorylase 683
33.4.6 Novel Pathways 684
33.4.7 Cyclooxygenase-2 684
33.4.8 Other Angiogenic Pathways 685
33.4.9 Inhibitory Proteins and Other Natural Products 685
33.4.10 Antibody Therapy 687
33.4.11 Gene Therapy 688
33.4.12 Macrophages 688
33.4.13 Oncogenes and Growth Factors 688
33.4.14 Extracellular Matrix 689
33.4.14.1 Collagen Peptidomimetics 690
33.4.14.2 Tetracycline Derivatives 690
33.4.14.3 Bisphosphonates 690
33.4.15 Hypoxia Pathways 691
33.4.16 Chemotherapy: Conventional Dose and Metronomic Dosing 692
33.5 Conclusions 693
34 Breast Cancer Gene Therapy 705
34.1 Introduction ... 705
34.2 DNA Delivery System in Breast Cancer Gene Therapy 706
34.2.1 Viral Vectors .. 706
34.2.1.1 Adenoviral Vectors 706
34.2.1.2 Other Viral Vectors 707
34.2.2 Chemical and Biochemical Vectors 707
34.2.2.1 Cationic Liposomes 708
34.2.2.2 Polycationic Polymers 709
34.3 Strategies of Breast Cancer Gene Therapy 710
34.3.1 Strategies in Tumor Targeting 710
34.3.1.1 Tumor-Targeting Vectors 710
34.3.1.2 Tumor-Specific Control Elements 711
34.3.1.3 Conditionally Replicating Vectors 712
34.3.2 Strategies in Tumor Suppression 713
34.3.2.1 Blocking the Activity of Oncogenes 713
34.3.2.2 Restoring the Function of Tumor-Suppressor Genes 716
34.3.2.3 Inducing Apoptosis or Suicide of Tumor Cells 717
34.3.2.4 Indirect Strategies 720
34.4 Clinical Trials of Breast Cancer Gene Therapy 721
34.4.1 E1A Gene Therapy 721
34.4.2 p53 Gene Therapy 724
34.4.3 Gene-Directed Enzyme Prodrug Therapy 725
34.4.4 Genetic Immunotherapy 725
34.4.4.1 Dendritic Cells 725
34.4.4.2 Cytokines ... 726
34.5 Conclusion .. 727

35 Innovative Rational-Derived, Target-Based and Cytotoxic Therapies for Breast Cancer and Other Malignancies 741
35.1 Introduction ... 741
35.2 Proliferative Signal Transduction Elements as Therapeutic Targets 741
35.3 Targeting the Mitogen-Activated Protein Kinase Pathway (Ras/Raf/MEK) 744
35.3.1 Targeting Ras ... 744
35.3.2 Targeting MAPK Elements Downstream of Ras 747
35.3.3 Targeting Raf ... 748
35.3.4 Targeting MEK ... 749
35.3.5 Targeting ERK ... 750
35.4 Targeting Insulin-Like Growth Factor Signaling 751
35.5 Targeting the PI3K/Akt/PTEN Pathway 752
35.6 Targeting mTOR ... 753
35.7 Targeting Regulators of Apoptosis 757
35.7.1 Targeting the Intrinsic Pathway of Apoptosis ... 757
35.7.1.1 Targeting Bcl-2 758
35.7.2 Targeting the Extrinsic Pathway of Apoptosis ... 760
35.7.2.1 Targeting TRAIL Receptors 760
35.8 Targeting Regulators of Protein Trafficking 761
35.8.1 Targeting the Heat-Shock Protein Complex 761
35.8.2 Targeting the Ubiquitin-Proteasome Protein Degradation Pathway .. 762
35.9 Targeting Epigenetic DNA Modifications 763
35.9.1 Targeting HDAC .. 764
35.10 Novel Cytotoxic Compounds 765
35.10.1 Ecteinascidin-743 765
35.10.2 TLK-286 .. 767
35.10.3 Antimicrotubule Agents 767
35.11 Targeting Mitotic Kinesins 768

36 Mechanisms of Breast Cancer Resistance to Chemotherapy 783
36.1 Introduction ... 783
36.2 Mechanisms to Decrease Drug Uptake 785
36.3 Mechanisms to Increase Drug Extrusion 787
36.4 Mechanisms of Drug Inactivation Through Metabolism .. 791
36.5 Modification of Drug Target or of Dependence on Drug Target 792
36.6 Modification of Cell-Cycle Checkpoint Control and Apoptosis Mediators 792
36.7 Repair of DNA Damage 794
36.8 Impact of the Extracellular Environment 796
36.9 Summary ... 796

37 Mechanisms of Resistance to Hormone Therapy .. 805
37.1 Introduction ... 805
37.2 Receptor Structure and Function 805
37.3 ERα, ERβ, and Prediction of Response to Therapy .. 807
39.3.3 Caspase Activity in Breast Cancers

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>847</td>
</tr>
</tbody>
</table>

39.3.4 IAP Family Proteins in Breast Cancer

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>848</td>
</tr>
</tbody>
</table>

39.3.5 Apoptosis Regulators in Breast Cancer

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>848</td>
</tr>
</tbody>
</table>

39.3.5.1 The p53 Pathway

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>848</td>
</tr>
</tbody>
</table>

39.3.5.2 The PI3K/AKT/PTEN Pathway

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>849</td>
</tr>
</tbody>
</table>

39.3.6 Molecular Targets in the Apoptotic Pathway for Treatment of Apoptosis-Resistant Breast Cancers

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>850</td>
</tr>
</tbody>
</table>

40 Breast Cancer and Pregnancy

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>863</td>
</tr>
</tbody>
</table>

40.1 Introduction

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>863</td>
</tr>
</tbody>
</table>

40.2 Diagnosis

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>863</td>
</tr>
</tbody>
</table>

40.3 Pathological Characteristics

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>864</td>
</tr>
</tbody>
</table>

40.4 Staging Investigations

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>865</td>
</tr>
</tbody>
</table>

40.5 Treatment Options

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>866</td>
</tr>
</tbody>
</table>

40.5.1 Surgery

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>866</td>
</tr>
</tbody>
</table>

40.5.2 Radiotherapy

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>866</td>
</tr>
</tbody>
</table>

40.5.3 Chemotherapy

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>867</td>
</tr>
</tbody>
</table>

40.5.3.1 Maternal Effects of Chemotherapy

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>867</td>
</tr>
</tbody>
</table>

40.5.3.2 Fetal Effects of Chemotherapy

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>867</td>
</tr>
</tbody>
</table>

40.5.4 Endocrine Therapy

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>870</td>
</tr>
</tbody>
</table>

40.5.5 Bisphosphonates

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>870</td>
</tr>
</tbody>
</table>

40.6 Termination of Pregnancy

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>871</td>
</tr>
</tbody>
</table>

40.7 Prognosis

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>871</td>
</tr>
</tbody>
</table>

40.8 Pregnancy After Breast Cancer

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>872</td>
</tr>
</tbody>
</table>

40.9 Conclusions

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>873</td>
</tr>
</tbody>
</table>

41 Hormone Replacement Therapy After Breast Cancer

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>879</td>
</tr>
</tbody>
</table>

41.1 Introduction

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>879</td>
</tr>
</tbody>
</table>

41.2 HRT in Healthy Women

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>880</td>
</tr>
</tbody>
</table>

41.2.1 Menopausal Physiology

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>880</td>
</tr>
</tbody>
</table>

41.2.2 ERT/HRT in the Treatment of Menopausal Symptoms

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>881</td>
</tr>
</tbody>
</table>

41.2.3 Long-Term Effects of ERT/HRT

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>881</td>
</tr>
</tbody>
</table>

41.2.3.1 Osteoporosis

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>881</td>
</tr>
</tbody>
</table>

41.2.3.2 Cardiovascular Disease

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>881</td>
</tr>
</tbody>
</table>

41.2.3.3 Alzheimer's Disease and Cognitive Function

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>883</td>
</tr>
</tbody>
</table>

41.2.3.4 Colon Cancer

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>883</td>
</tr>
</tbody>
</table>

41.2.3.5 Ovarian Cancer

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>884</td>
</tr>
</tbody>
</table>

41.2.3.6 Breast Cancer

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>885</td>
</tr>
</tbody>
</table>
41.2.3.7 Thromboembolic Events 888
41.3 The Use of ERT/HRT in Women
with a Previous Diagnosis of Breast Cancer 888
41.4 Treatment Alternatives 893
41.4.1 Osteoporosis, Colon Cancer, Genitourinary
Symptoms, Alzheimer's Disease, Vasomotor
Symptoms .. 893
41.4.1.1 Osteoporosis 893
41.4.1.2 Coronary Artery Disease 894
41.4.1.3 Colon Cancer 894
41.4.1.4 Genitourinary Symptoms 894
41.4.1.5 Alzheimer's Disease 894
41.4.1.6 Vasomotor Symptoms 894
41.5 Summary .. 896

42 Male Breast Cancer 903
42.1 Introduction .. 903
42.2 Incidence ... 903
42.3 Risk Factors ... 904
42.3.1 Hormonal Factors 904
42.3.2 Testicular Abnormalities 904
42.3.3 Benign Breast Conditions 905
42.3.4 Liver Conditions 905
42.3.5 Drugs .. 905
42.3.6 Environmental Factors 905
42.3.7 Other Risk Factors 905
42.4 Genetics ... 906
42.4.1 BRCA1 and BRCA2 906
42.4.2 Other Alterations 906
42.5 Diagnosis .. 907
42.5.1 Clinical Presentations 907
42.5.2 Mammographic Features 907
42.5.3 Prognostic Factors 907
42.5.3.1 Node Status 908
42.5.3.2 Tumor Size 908
42.5.3.3 Grade .. 908
42.5.3.4 Hormone Receptors 908
42.5.3.5 Age .. 909
42.5.4 Pathology ... 909
42.6 Treatment of Localized Disease 909
42.6.1 Local Treatment 910
42.6.2 Adjuvant Radiotherapy 910
42.6.3 Adjuvant Tamoxifen 910
42.6.4 Adjuvant Chemotherapy 911
42.7 Metastatic Disease 911
42.7.1 Hormonal Therapy 912
42.7.2 Chemotherapy 912
42.8 Immunohistochemical Differences Between Male and Female BC 913
42.8.1 HER-2 expression 913
42.8.2 Cell-Cycle Regulatory Proteins 914
4.8.3 Androgen-Regulated Proteins 914
42.8.4 Other Features 915
42.9 Comparison of Outcome Between Male and Female BC 916
42.9.1 Is there a difference in prognosis? 916
42.9.2 Potential Explanations 917
42.10 Conclusions 918

43 Patients’ Preferences: What Makes Treatments Worthwhile? 925

43.1 Introduction 925
43.2 Clinical Decision Making 925
43.2.1 Background 925
43.2.2 What are Preferences? 926
43.2.3 How are Preferences Measured? 926
43.2.4 Describing Treatments and Outcomes 927
43.2.5 Attitudes to Timing, Risks, Gains, and Losses ... 928
43.2.6 Defining Commonplaces 928
43.3 Breast Cancer 929
43.3.1 Early Breast Cancer 930
43.3.1.1 Benefits and Harms of Adjuvant Chemotherapy .. 930
43.3.1.2 Preferences for Adjuvant Chemotherapy 931
43.3.1.3 Benefits, Harms and Preferences for Adjuvant Endocrine Therapy 933
43.3.1.4 Preferences for Adjuvant Radiation Therapy .. 934
43.3.1.5 Preferences for Sentinel-Node Biopsy 934
43.3.1.6 Preferences for Breast Surgery 935
43.3.2 Advanced Breast Cancer 935
43.3.2.1 Benefits and Harms of Palliative Chemotherapy ... 935
43.3.2.2 Preferences for Palliative Chemotherapy 936
43.4 Predictors of Preferences 936
43.5 Rationality of Preferences 937
43.6 Incorporating Preferences in Clinical Practice 938
43.7 Implications for Research 939
43.8 Conclusion 940
44 Breast Cancer: the Impact of Depression and its Treatment 945

44.1 Prevalence of Depression in Breast Cancer 945
44.2 Depressive Symptomatology in the Woman with Breast Cancer 945
44.3 Alterations of Mood and Hypothalamic-Pituitary-Gonadal Axis Function in Women with Breast Cancer 948
44.4 Hypothalamic-Pituitary-Adrenal Axis Hyperactivity in Patients with Major Depression 949
44.5 Depression, Immune Function, and Cancer 952
44.6 Psychopharmacologic Treatment of Depression in Women with Breast Cancer 954
44.7 Psychosocial Treatment of Depression in Women with Breast Cancer 962
44.8 Summary 963

45 Molecular Profiling in Breast Cancer 977

45.1 Introduction 977
45.2 Individual (Single) Prognostic and Predictive Markers 980
45.2.1 ER/PR Status 980
45.2.2 HER2 981
45.2.3 Urokinase-type Plasminogen Activator/Plasminogen Activator Inhibitor Type I 983
45.2.4 Cyclin E 984
45.2.5 Other Markers 985
45.3 Gene-Expression Profiling Techniques 985
45.3.1 DNA Microarrays 985
45.3.2 Multigene RT-PCR 987
45.4 Molecular Profiling Data in Breast Cancer 988
45.4.1 Molecular Profiling as a Classification Tool 988
45.4.2 Molecular Profiling as a Prognostic Tool 990
45.4.3 Molecular Profiling as a Predictive Tool: Neoadjuvant Studies 995
45.5 Limitations 997
45.6 Future Trials 999
45.7 Closing Remarks 1002
46 \hspace{1cm} \textbf{Clinical Trials in the Era of Treatment Tailoring} \hspace{1cm} 1007

46.1 \hspace{1cm} Introduction \hspace{1cm} 1007

46.2 \hspace{1cm} Factors Influencing Treatment Tailoring for Breast Cancer \hspace{1cm} 1007

46.3 \hspace{1cm} Models of Clinical Trials Based on the Concept of Tailored Investigations \hspace{1cm} 1008

46.3.1 \hspace{1cm} Subgroup of Patients with Specific Clinical Features \hspace{1cm} 1008

46.3.2 \hspace{1cm} Subgroup of Patients with Predictive or Prognostic Biological Indicators \hspace{1cm} 1009

46.3.2.1 \hspace{1cm} Trial Design to Validate a Predictive Biological Indicator \hspace{1cm} 1010

46.3.2.2 \hspace{1cm} Trial Design to Validate a Prognostic Biological Indicator \hspace{1cm} 1012

46.3.3 \hspace{1cm} Targeted Therapies \hspace{1cm} 1015

46.4 \hspace{1cm} Conclusion \hspace{1cm} 1017

\textbf{Subject Index} \hspace{1cm} 1021
Contributors

David Abramson
Department of Surgery
Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, NY 10023
USA
E-mail: abramsod@mskcc.org

Kathy S. Albain
Loyola University Medical Centre
Cardinal Bernardin Cancer Centre
2160 S First Avenue Rm 109
Maywood, IL 60153
USA
E-mail: kalbain@lumc.edu

Douglas W. Arthur
Dept. Radiation Oncology
Virginia Commonwealth University
Richmond, VA 23298-0058
USA
E-mail: DArthur@mcvh-vcu.edu

Evandro Azambuja
Department of Medical Oncology
Jules Bordet Institute
Boulevard de Waterloo, 125
1000 Brussels
Belgium
E-mail: evandro.azambuja@bordet.be
Jose Baselga
Department of Medical Oncology
Vall D’Hebron University Hospital
P Vall o Hebron 119-129
Barcelona 08035
Spain
E-mail: baselga@hg.vhebron.es

Wendie Berg
American Radiology Services, Inc.
John Hopkins Greenspring
301 Merrie Hunt Drive
Lutherville, MD 21093
USA
E-mail: wendieberg@hotmail.com

Chantal Benard-Marty
Department of Medical Oncology
Jules Bordet Institute
Boulevard de Waterloo, 125
1000 Brussels
Belgium
E-mail: chantal.bernard@bordet.be

Hyman Bernard Muss
UHC St Joseph 3400
University of Vermont
1 S Prospect Street
Burlington, VT 05401-1473
USA
E-mail: hyman.muss@vtmednet.org

Ephi Betan
Georgia School of Professional Psychology
Clinical Psychology Department
Argosy University/Atlanta
980 Hammond Drive
Suite 100
Atlanta, GA 30328
USA
E-mail: ebetan@argosyu.edu
Jean-Jacques Body
Institut Jules Bordet
1, rue Héger-Bordet
1000 Brussels
Belgium
E-mail: jj.body@bordet.be

Jan Bogaerts
EORTC Data Centre
Avenue E Mounier 83/Boîte 11
Brussels 1200
Belgium
E-mail: jbo@eortc.be

Angela Bowling
Emory University School of Medicine
Atlanta, GA
USA
E-mail: tittlemouse25@hotmail.com

Ebony Boyce
Laboratory of Pathology
National Cancer Institute
Bethesda, MD
USA

Grant Walter Carlson
Emory Clinic
1365B Clifton Rd NE
Atlanta, GA 30322-1013
USA
E-mail: grant_carlson@emory.org

Fatima Cardoso
Department of Medical Oncology
Jules Bordet Institute
Boulevard de Waterloo, 125
1000 Brussels
Belgium
E-mail: fatima.cardoso@bordet.be
Clifford K.S. Chao
Department of Radiation Oncology
UT MD Anderson Cancer Center
1515 Holcombe Boulevard
Houston, TX 77030
USA
E-mail: cchao@mail.mdanderson.org

Alan Stuart Coates
Australian Cancer Society
GPBO Box 4708
Sydney, NSW 2001
Australia
E-mail: alancoates@cancer.org.au

Javier Cortes
Oncology Service
Vall D’Hebron University Hospital
P Vall d’Hebron 119-129
Barcelona 08035
Spain
E-mail: cortes@hg.vhebron.es

Yukun Cui
Department of Molecular and Cellular Biology
Baylor College of Medicine
MS: BCM600, 1220 Alkek
One Baylor Plaza
Houston, TX 77030
USA
E-mail: ycui@breastcenter.tmc.edu

Steven A. Curley
Department of Surgical Oncology
UT MD Anderson Cancer Center
1515 Holcombe Boulevard Box 424
Houston, TX 77030
USA
E-mail: scurley@mdanderson.org
Lissandra Dal Lago
Department of Medical Oncology
Jules Bordet Institute
Boulevard de Waterloo, 125
1000 Brussels
Belgium
E-mail: lissandra.dallago@bordet.be

Nancy Davidson
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
Cancer Research Building, Room 409
1650 Orleans Street
Baltimore, MD 21231
USA
E-mail: davidna@jhmi.edu

Mellar P. Davis
Hematology/Medical Oncology
9500 Euclid Avenue
Cleveland Clinic Foundation
Cleveland, OH 44195
USA
E-mail: davism6@ccf.org

Chi-Ping Day
Bldg. 37, Room 5002
NIH/NCI-Bethesda
Bethesda, MD 20892-4264
USA
E-mail: daychi@mail.nih.gov

Gaston Demonty
Translational Research Unit
Jules Bordet Institute
Boulevard de Waterloo, 215
1000 Brussels
Belgium
E-mail: Gaston.Demonty@bordet.be
Christine Desmedt
Translational Research Unit
Jules Bordet Institute
Boulevard de Waterloo, 215
1000 Brussels
Belgium
E-mail: Christine.Desmedt@bordet.be

Daniel Devriendt
Department of Radiation Therapy
Institut Jules Bordet
Université Libre de Bruxelles
Brussels
Belgium
E-mail: daniel.devriendt@bordet.be

Virginie Durgecq
Translational Research Unit
Jules Bordet Institute
Boulevard de Waterloo, 215
1000 Brussels
Belgium
E-mail: Virginie.Durbecq@bordet.be

Vlatka Duric
NHMRC Clinical Trials Centre and Department of Psychological Medicine, University of Sydney
NHMRC Clinical Trials Centre
Locked Bag 77
Camperdown, NSW 2050
Australia
E-mail: vlatka@ctc.usyd.edu.au

Jan Erik Duus
Champlain Valley Physicians Hospital
Fitzpatrick Cancer Center
75 Beekman St.
Plattsburgh, NY 12901
USA
E-mail: jduus1@alum.rpi.edu
Matthew James Ellis
660 South Euclid
Campus Box 8056
St. Louis, MO 63110
E-mail: mellis@im.wustl.edu

Paul Anthony Ellis
Guys Hospital
St Thomas Street
London SE1 9RT
UK
E-mail: paul.ellis@gstt.sthames.nhs.uk

Alexandru E. Eniu
Cancer Institute “I. Chiricuta”
Department of Breast Tumors
Republicii 34–36
400015 Cluj-Napoca
Romania
E-mail: aleniu@iocn.ro

Laura Esserman
Breast Care Center NCSF
University of California San Francisco
1600 Divisadero Street, 2nd Floor
San Francisco, CA 94115-3006
USA
E-mail: laura.esserman@ucsfmedctr.org

Ian S. Fentiman
Guy’s King’s & St Thomas’ School of Medicine
Guy’s Hospital
London SE1 9RT
UK
E-mail: ian.fentiman@cancer.org.uk

Alain Fourquet
Department of Radiation Oncology
Institut Curie
26 Rue d’Ulm
75005 Paris
France
E-mail: alain.fourquet@curie.net
Suzanne A.W. Fuqua
Breast Center
Baylor College of Medicine
MS: BCM600, 1220 Alkek
One Baylor Plaza
Houston, TX 77030
USA
E-mail: sfuqua@bcm.tmc.edu

Daniele Generali
Molecular Oncology
Cancer Research UK
Weatherall Institute of Molecular Medicine
John Radcliffe Hospital
Oxford OX3 9DS
UK
E-mail: daniele.generali@cancer.org.uk

Sharon H. Giordiano
Department of Breast Medical Oncology
UT MD Anderson Cancer Center
1515 Holcombe Boulevard Box 424
Houston, TX 77030
USA
E-mail: sgiordan@mdanderson.org

Marjorie C. Green
Department of Breast Medical Oncology
UT MD Anderson Cancer Center
1515 Holcombe Boulevard Box 424
Houston, TX 77030
USA
E-mail: mgreen@mdanderson.org

Bruce Haffty
Department of Radiation Oncology
The Cancer Institute of New Jersey
195 Little Albany Street
New Brunswick, NJ 08903
USA
Anne Hamilton
Level 6, Gloucester House
Royal Prince Alfred Hospital
Missenden Road
Camperdown, NSW 2050
Australia
E-mail: anne.hamilton@cs.nsw.gov.au

Jonathan A.F. Hannay
Department of Surgical Oncology
Box 107
MD Anderson Cancer Center
1515 Holcombe Blvd.
Houston, TX 77030
USA
E-mail: jahannay@manderson.org

Adrian L. Harris
Molecular Oncology
Cancer Research UK
Weatherall Institute of Molecular Medicine
John Radcliffe Hospital
Oxford OX3 9DS
UK
E-mail: aharris.lab@cancer.org.uk

George Hildebrand
Department of Medicine
Hôpital Erasme
Route de Lennik, 808
1070 Brussels
Belgium
E-mail: hildebrand@skynet.be

Chris E. Holmes
1 Colchester Avenue, ST. Joseph 3rd floor
Department of Hematology and Oncology
University of Vermont - FAHC
Burlington, VT 05401
USA
E-mail: chris.holmes@vtmednet.org
Gabriel N. Hortobagyi
Department of Breast Medical Oncology
UT MD Anderson Cancer Center
1515 Holcombe Boulevard Box 424
Houston, TX 77030
USA
E-mail: ghortoba@mdanderson.org

Clifford Hudis
Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, NY 10021-6007
USA
E-mail: hudisc@mskcc.org

Mien-Chie Hung
The University of Texas MD Anderson Cancer Center
1515 Holcombe Blvd
Houston, TX 77030-4095
USA
E-mail: mhung@mdanderson.org

Tara L. Huston
Department of Surgery
New York-Presbyterian Hospital
Weill Cornell Medical Center
435 East 70th Street
New York, NY 10021
USA
E-mail: taa9002@nyp.org

Rachel M. Jones
Department of Medical Oncology
South West Wales Cancer Institute
Singleton Hospital
Sketty, Swansea SA2 8QA
UK
E-mail: rachelm.Jones@swansea-tr.wales.nhs.uk

V. Craig Jordan
Fox Chase Cancer Center
Department of Surgery
333 Cotman Ave
Philadelphia, PA 19111-2497
USA
E-mail: v.craig.jordan@fccc.edu
Elise C. Kohn
Laboratory of Pathology
National Cancer Institute
Bethesda, MD
USA

Daniel Krauss
Department of Radiation Oncology
William Beaumont Hospital
3601 W. Thirteen Mile Road
Royal Oak, MI 48073
USA
E-mail: dkrauss@beaumont.edu

Ian Krop
Dana-Farber Cancer Institute
44 Binney St
Boston, MA 02115-6084
USA
E-mail: ikrop@partners.org

Hannah Larsen
1332-B Euclid Avenue
Emory University School of Medicine
Atlanta, GA 30307
USA
E-mail: hhlarsen@alum.emory.edu

Robert Leonard
Department of Medical Oncology
South West Wales Cancer Institute
Singleton Hospital
Sketty, Swansea SA2 8QA
UK
E-mail: r.c.f.leonard@swansea.ac.uk
E-mail: robert@swwci.vianw.co.uk
E-mail: helen.murphy@swansea-tr.wales.nhs.uk (secretary)

M. Levivier
Department of Neurosurgery
Hôpital Erasme
Route de Lennik, 808
1070 Brussels
Belgium
Edison T. Liu
Genome Institute of Singapore
Genome #02-01
60 Biopolis Street
Singapore 138672
Singapore
E-mail: liue@gis.a-star.edu.sg

Hui-Wen Lo
Department of Molecular and Cellular Oncology
The University of Texas MD Anderson Cancer Center
1515 Holcombe Blvd.
Houston, TX 77030
USA
E-mail: hlo@mdanderson.org

Shelly S. Lo
Loyola University Medical Centre
Cardinal Bernardin Cancer Centre
2160 S First Avenue Rm 109
Maywood, IL 60153
USA
E-mail: shlo@lumc.edu

Sherene M. Loi
Translational Research Unit
Jules Bordet Institute
Boulevard de Waterloo, 215
1000 Brussels
Belgium
E-mail: Sherene.loi@bordet.be

Eleftherios P. Mamounas
Aultman Cancer Centre
2600 Sixth Street SW
Canton, OH 44710
USA
E-mail: tmamounas@aultman.com

Beryl McCormick
Department of Radiation Oncology
Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, NY 10021
USA
E-mail: mccormib@mskcc.org
Philip Meijnen
Department of Surgery
Antoni van Leeuwenhoek Hospital
Amsterdam Netherlands Cancer Institute
Plesmanlaan 121
1066 CX Amsterdam
The Netherlands
E-mail: p.meijnen@nki.nl

Gordon B. Mills
Molecular Therapeutics
MD Anderson Cancer Center
1515 Holcombe Boulevard T-5-3900
Houston, TX 77030
USA
E-mail: gmills@mail.mdanderson.org

Monica Morrow
Chairman, Department of Surgical Oncology
Fox Chase Cancer Center
Department of Surgery
333 Cotman Ave
Philadelphia, PA 19111-2497
USA
E-mail: monica.morrow@fccc.edu

Dominique Musselman
Emory University School of Medicine
Department of Psychiatry
Woodruff Memorial Building
1639 Pierce Drive, Suite 4000
Atlanta, GA 30322
USA
E-mail: dmussel@emory.edu

Larry Norton
Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, NY 10021-6007
USA
E-mail: nortonl@mskcc.org
Joyce O’Shaughnessy
US Oncology Group
3535 Worth St. Collins 5
Dallas, TX 75246
USA
E-mail: Joyce.OShaughnessy@usoncology.com

Catherine Park
Department of Radiation Oncology
University of California San Francisco
1600 Divisadero St.
San Francisco, CA 94143
USA
E-mail: park@radonc17.ucsf.edu

Edith A. Perez
Division of Hematology/Oncology
Multidisciplinary Breast Clinic
Mayo Clinic Jacksonville
4500 San Pablo Rd
Jacksonville, FL 32224-1865
USA
E-mail: perez.edith@mayo.edu

Johannes L. Peterse
Department of Pathology
Antoni van Leeuwenhoek Hospital
Amsterdam Netherlands Cancer Institute
Plesmanlaan 121
1066 CX Amsterdam
The Netherlands
E-mail: j.peterse@nki.nl

Martine J. Piccart
Department of Medical Oncology
Jules Bordet Institute
Boulevard de Waterloo, 215
1000 Brussels
Belgium
E-mail: martine.piccart@bordet.be
Kathleen I. Pritchard
Head Clinical Trial and Epidemiology
Toronto Sunnybrook Regional Cancer Center
2075 Bayview Avenue
Toronto, ON M4N 3M5
Canada
E-mail: kathy.pritchard@sw.ca

Tatiana M. Prowell
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
Cancer Research Building, Room 186
1650 Orleans Street
Baltimore, MD 21231
USA
E-mail: tprowell@jhmi.edu

Kun-Ming Rau
123 Ta-Pei Road
Niao-Sung Hsiang
Kaohsiung Hsien
Taiwan
E-mail: kmrau58@adm.cgmh.org.tw

Alistair Ring
Department of Medical Oncology
Thomas Guy House
Guy’s Hospital
London SE1 9RT
UK
E-mail: alastair.ring@gstt.nhs.uk

Anne de la Rochefordière
Department of Radiation Oncology
Institut Curie
26 Rue d’Ulm
75005 Paris
France
E-mail: anne.de-la-rochefordiere@curie.net
Eric Keith Rowinsky
Institute for Drug Development
Cancer Therapy and Research Center
7979 Wurzbach Road
4th Floor Zeller Building
San Antonio, TX 78229-3271
USA
E-mail: erowinsk@saci.org

Emiel J.T. Rutgers
Department of Surgery
The Netherlands Cancer Institute
Antoni van Leeuwenhoek Hospital
Plesmanlaan 121
Amsterdam 1066 CX
The Netherlands
E-mail: e.rutgers@nki.nl

Brigitte Siga-Zafrani
Department of Pathology
Institut Curie
26 rue d’Ulm
75005 Paris
France
E-mail: brigitte.segal@curie.net

Rache M. Simmons
New York-Presbyterian Hospital/Weill Cornell Medical Center
425 East 61st Street
New York, NY 10021
USA
E-mail: rms2002@med.cornell.edu

Lawrence J. Solin
Department of Radiation Oncology
Hospital of the University of Pennsylvania
3400 Spruce Street
Philadelphia, PA 19104-4283
USA
E-mail: solin@xrt.upenn.edu
Wendy Somerset
1355 Peachtree St, Suite 580
Emory University School of Medicine
Atlanta, GA 30309
USA
E-mail: wsomerset@gmail.com

Christos Sotiriou
Jules Bordet Institute
Boulevard de Waterloo, 121
1000 Brussels
Belgium
E-mail: christos.sotiriou@bordet.be

Martin Stockler
NHMRC Clinical Trials Centre
University of Sydney
Sydney, NSW
Australia
E-mail: stockler@med.usyd.edu.au

Steven C. Stout
Emory University School of Medicine
Department of Psychiatry and Behavioral Sciences
Woodruff Research Memorial Building, Suite 4000
Atlanta, GA 30322
USA
E-mail: sstout@emory.edu

Patrick Therasse
EORTC Data Centre
Avenue E Mounier 83/Boîte 11
Brussels 1200
Belgium
E-mail: pth@eortc.be

Mark van deVijver
Department of Pathology
Antoni van Leeuwenhoek Hospital
Amsterdam Netherlands Cancer Institute
Plesmanlaan 121
1066 CX Amsterdam
The Netherlands
E-mail: m.vd.vijver@nki.nl
Frank Vicini
Department of Radiation Oncology
William Beaumont Hospital
3601 W. Thirteen Mile Road
Royal Oak, MI 48073
USA
E-mail: fvicini@beaumont.edu

Shao-Chun Wang
Department of Molecular and Cellular Oncology
The University of Texas MD Anderson Cancer Center
1515 Holcombe Blvd.
Houston, TX 77030
USA
E-mail: scwang@mdanderson.org

Timothy Whelan
Hamilton Regional Cancer Center
699 Concession St. Room 3-62
Hamilton, ON L8V 5C2
Canada
E-mail: tim.whelan@hrcc.on.ca

Eric Paul Winer
Dana-Farber Cancer Institute
44 Binney St
Room D1210
Boston, MA 02115-6084
USA
E-mail: ewiner@partners.org

Zee Wan Wong
Department of Medical Oncology
National Cancer Centre
11 Hospital Drive
Singapore
E-mail: dmowzw@nccs.com.sg

William Wood
Department of Surgery
Emory University Hospital
1364 Clifton Road NE B206
Atlanta, GA 30322-1059
USA
E-mail: William_wood@emory.org
Lilly Yang
Department of Surgery and Winship Cancer Institute
Emory University School of Medicine
1365 C Clifton Road, B4100
Atlanta, GA 30322
USA
E-mail: lyang02@emory.edu

Thomas Yang
Department of Radiation Oncology
UT MD Anderson Cancer Center
1515 Holcombe Boulevard
Houston, TX 77030
USA

Dihua Yu
Department of Surgical Oncology
Department of Molecular and Cellular Oncology
Division of Surgery
Box 107
The University of Texas MD Anderson Cancer Center
1515 Holcombe Boulevard
Houston, TX 77030
USA
E-mail: dyu@mdanderson.org
Breast Cancer Management and Molecular Medicine
Piccart, M.; Wood, W.C.; Hung, C.-M.; Solin, L.J.; Cardoso, F. (Eds.)
2006, LV, 1027 p., Hardcover
ISBN: 978-3-540-28265-5