Contents

Part I Soil Invertebrates

1 Biology of Soil Invertebrates 3
 Gerhard Eisenbeis
 1.1 Introduction ... 3
 1.2 The Microfauna ... 8
 1.2.1 Protozoa ... 8
 1.2.2 Nematoda – Roundworms, Eelworms 10
 1.3 The Mesofauna ... 12
 1.3.1 Pseudoscorpionida – False Scorpions, Book Scorpions 13
 1.3.2 Acari – Mites .. 14
 1.3.3 Symphyla ... 17
 1.3.4 Pauropoda ... 19
 1.3.5 Collembola – Springtails 19
 1.3.6 Protura ... 23
 1.3.7 Diplura – Double Tails 25
 1.4 The Macrofauna ... 26
 1.4.1 Araneida – Spiders .. 27
 1.4.2 Opiliones – Harvestmen 29
 1.4.3 Terrestrial Isopoda (Oniscoidea) – Woodlice 30
 1.4.4 Chilopoda – Centipedes 33
 1.4.5 Diplopoda - Millipedes 35
 1.4.6 Enchytraeidae – Whiteworms, Potworms 37
 1.4.7 Oligochaeta: Lumbricidae – Earthworms 39
 1.4.8 Terrestrial Gastropoda – Slugs and Snails 41
 1.4.9 Insecta – Pterygote Insects (Short Comments About the Role of Selected Groups of Higher Insects) 42
 1.5 Conclusions ... 43
 References ... 47

2 Interactions Between Bacteria and Nematodes 55
 Leo Eberl, David J. Clarke
 2.1 Introduction ... 55
2.2 Pathogenic Interactions .. 55
2.3 Symbiotic Interactions... 57
 2.3.1 Photorhabdus and Xenorhabdus 57
2.4 Conclusions .. 62
References ... 62

3 Earthworm Gut Microbial Biomes: Their Importance to Soil Microorganisms, Denitrification, and the Terrestrial Production of the Greenhouse Gas N₂O
Harold L. Drake, Andreas Schramm, Marcus A. Horn
3.1 Introduction .. 65
3.2 The Earthworm Gut as a Transient Microbial Habitat 65
3.3 In Vivo and In Situ Emissions of the Greenhouse Gas N₂O by Earthworms ... 66
3.4 Microenvironment of the Earthworm Gut 69
 3.4.1 The Digestive System of the Earthworm 69
 3.4.2 Physicochemical Parameters of the Gut that Stimulate Ingested Microbes .. 70
3.5 Microbial Processes in the Earthworm Gut 72
 3.5.1 Processes Associated with the Production of N₂O 72
 3.5.2 Fermentative and Other Microbial Processes 75
3.6 Microbial Populations in the Earthworm Gut 76
 3.6.1 Quantitative Population Changes During Gut Passage 77
 3.6.2 Qualitative Population Changes Upon Gut Passage 78
 3.6.3 The Quest for an Earthworm-Specific Microbial Population ... 79
3.7 Conclusions .. 80
References ... 82

4 Intestinal Microbiota of Millipedes
Boris A. Byzov
4.1 Introduction .. 89
4.2 Structure and Function of the Digestive Tract 90
4.3 Physiological Conditions in the Gut 92
4.4 Microscope Studies of Intestinal Microbiota 93
 4.4.1 Bacteria ... 93
 4.4.2 Yeasts .. 95
 4.4.3 Mycelial Fungi .. 95
4.5 Taxonomic Studies of Intestinal Microbiota 95
 4.5.1 Bacteria ... 101
 4.5.2 Fungi .. 103
4.6 Functions of the Intestinal Microbiota 104
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.1</td>
<td>Digestive Functions of Gut Microorganisms</td>
<td>104</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Intestinal Microbiota as a Food for Millipedes</td>
<td>107</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Resistance to Colonization</td>
<td>107</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Intestinal Microbiota as a Pathogenic Agent</td>
<td>108</td>
</tr>
<tr>
<td>4.7</td>
<td>Digestion of Microorganisms by Millipedes</td>
<td>109</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Killing Activity of the Midgut Fluid</td>
<td>109</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Killing Effect</td>
<td>109</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Properties of the Killing Compound(s)</td>
<td>110</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Induced Autolysis</td>
<td>110</td>
</tr>
<tr>
<td>4.7.5</td>
<td>Assimilation of Microorganisms</td>
<td>110</td>
</tr>
<tr>
<td>4.8</td>
<td>Conclusions</td>
<td>111</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>112</td>
</tr>
</tbody>
</table>

5 Intestinal Microbiota of Terrestrial Isopods

Rok Kostanjšek, Jasna Štrus, Aleš Lapanje, Gorazd Avguštin, Maja Rupnik, Damjana Drobone

5.1 Introduction | 115 |
5.2 Structure and Function of the Digestive System | 116 |
5.3 The Microbiota of the Digestive System | 119 |
5.3.1 Bacteria in the Gut | 119 |
5.3.2 Fungi and Protozoa in the Gut | 122 |
5.3.3 Bacteria in the Midgut Glands | 123 |
5.3.4 Infections of the Digestive System | 124 |
5.4 Conclusions | 125 |
References | 126 |

6 Collembola as a Habitat for Microorganisms

Christoph C. Tebbe, Alice B. Czarnetzki, Torsten Thimm

6.1 Introduction – Diversity and Activity of Collembola | 133 |
6.2 The Gut of Folsomia candida – an Unusual Microbial Habitat That Is Affected by Moulting | 136 |
6.3 Feeding Preferences of Folsomia candida and Fate of Ingested Bacterial Cells | 139 |
6.4 The Gut of Collembola: a Hot Spot for Conjugative Gene Transfer Between Bacteria | 141 |
6.5 Diversity of Microorganisms in the Gut of F. candida and Other Collembola | 144 |
6.6 Collembola Can Harbour the Reproduction Parasite Wolbachia and Other Intracellular Bacteria | 146 |
6.7 Conclusions | 149 |
References | 150 |
7 Methane Production by Terrestrial Arthropods

Johannes H. P. Hackstein, Theo A. van Alen, Jörg Rosenberg

7.1 Introduction ... 155
7.2 Symbiotic Methanogens and Terrestrial Arthropods 156
7.3 Why Do Certain Arthropods Make Methane and Others Not? 159
7.4 “Small Is Beautiful”: The Elusive Co-Existence of Aerobes and Anaerobes in Arthropod Guts 167
7.5 Longitudinal Differentiation of the Intestinal Tract of Methanogenic Arthropods .. 172
7.6 Intercompartment Hydrogen Transfer 172
7.7 Differentiations of the Intestinal Tract to Host Methanogenic Archaea (and Other Prokaryotes) 173
7.8 Biodiversity of Intestinal and Endosymbiotic Methanogens .. 175
7.9 Conclusions .. 176
References ... 177

Part II Termites as Model Organisms

8 Termites as Soil Engineers and Soil Processors

David E. Bignell

8.1 Introduction .. 183
8.2 Current State of Termite Science 185
8.3 Termite Biology and Evolution 190
8.4 Soil Ecosystem Engineers: Is This a Valid Concept? 193
8.5 Microbial Processing During Gut Transit 198
8.6 The Special Case of Fungus-Growing Termites 201
8.7 The Fate of Termite Faeces ... 203
8.8 Evidence of the Role of Termites in Pedogenesis and Soil Properties ... 205
8.8.1 Soil Profile Development .. 206
8.8.2 Bulk Density and Structural Stability of Mound Materials ... 207
8.8.3 Permeability to Water .. 208
8.8.4 Soil Chemistry ... 209
8.8.5 Organic Matter Decomposition 209
8.9 Conclusions .. 210
References ... 212

9 Cellulose Digestion in the Termite Gut

Li Li, Jürgen Fröhlich, Helmut König

9.1 Introduction .. 221
9.2 Termite's Cellulases .. 223
9.3 Microbial Cellulases in the Hindgut 225
9.4 Cellulose Digestion in the Termite
 Mastotermes darwiniensis .. 228
 9.4.1 Termites' and Flagellates' Cellulases 228
 9.4.2 Comparison of Termite's Cellulases 229
 9.4.3 Comparison of Archaezoan Cellulases 235
9.5 Conclusions .. 236
References .. 238

10 Symbiotic Protozoa of Termites 243
 Guy Brugerolle, Renate Radek

 10.1 Introduction .. 243
 10.2 Diversity, Cytology and Phylogeny of Symbiotic Protozoa
 in Lower Termites ... 243
 10.2.1 Cell Organisation in Oxymonad and Parabasalid
 Termite Flagellates .. 244
 10.3 Biology of Termite Flagellates 253
 10.3.1 Relationships Between Flagellates and Host 253
 10.3.2 Populations of Flagellates 256
 10.3.3 Nutrition .. 257
 10.3.4 Energy Metabolism/ Hydrogenosomes 259
 10.3.5 Motility .. 260
 10.3.6 Associations with Bacteria 262
 10.4 Conclusion ... 264
References .. 264

11 Diversity and Lignocellulolytic Activities
 of Cultured Microorganisms 271
 Helmut König, Jürgen Fröhlich, Horst Hertel

 11.1 Introduction .. 271
 11.2 Flagellates ... 272
 11.3 Bacteria .. 272
 11.4 Archaea ... 273
 11.5 Yeasts and Fungi .. 273
 11.6 Microhabitats .. 281
 11.7 Lignocellulose Degradation 284
 11.7.1 The Hydrolytic Stage of Lignocellulose Degradation... 284
 11.7.2 The Oxidative/Fermentative Stage
 of Lignocellulose Degradation 290
 11.7.3 The Methanogenic/Acetogenic Stage
 of the Lignocellulose Degradation 290
Contents

11.8 Nitrogen Fixing Bacteria .. 292
11.9 Intracellular Symbiosis .. 293
11.10 Conclusions .. 293
References ... 294

12 Diversity and Molecular Analyses of Yet-Uncultivated Microorganisms 303

Moriya Ohkuma, Yuichi Hongoh, Toshiaki Kudo

12.1 Introduction .. 303
12.2 Phylogenetic Identification of Symbiotic Protists 304
12.3 Methanogenic Archaea .. 305
12.4 Diversity of Eubacteria .. 305
12.5 Spatial Organization of Gut Community .. 309
12.6 Toward the Function of Gut Symbionts ... 311
12.7 Conclusions .. 313
References ... 314

13 The Intestinal Yeasts 319

Hansjörg Prillinger, Helmut König

13.1 Introduction .. 319
13.2 Morphological Characterization .. 319
13.3 Phenotypic and Genotypic Characterization 322
13.4 Cellulose and Hemicellulose-Degrading Yeasts 323
13.5 Evolutionary Considerations .. 326
13.6 Conclusions .. 330
References ... 331

14 Termitomyces/Termite Interactions 335

Corinne Rouland-Lefèvre, Tetsushi Inoue, Toru Johjima

14.1 Introduction .. 335
14.2 Phylogeny and Co-Evolution of Fungus-Growing Termites and Termitomyces .. 336
14.2.1 The Symbionts ... 336
14.2.2 Evolution of Fungus-Growing Termites and Termitomyces 337
14.3 The Role of Termitomyces in Mutualistic Symbiosis 338
14.3.1 Nature, Structure and Dynamics of the Fungus Comb 338
14.3.2 Role of Termitomyces in the Digestive Metabolism of Termites ... 340
14.4 Conclusions .. 347
References ... 347
15 Microbiology of Termite Hill (Mound) and Soil
Rina Kumari, Minu Sachdev, Shweta Sharma, Ram Prasad, Pham Huong Giang, Amar P. Garg, Ajit Varma

15.1 Introduction .. 351
15.2 Features Distinguishing Termites from Other Insects 352
15.3 Current Taxonomic Status ... 352
15.4 Ecophysiological Distribution 354
15.5 Termite Colonies and Castes 354
15.6 Life Cycle ... 358
15.7 Topography of the Termite Hill (Mound) and Nest 358
15.8 Microorganism from the Termite Soil 359
15.9 Soil-Feeding Termites .. 363
15.10 Fungus-Growing Termites .. 364
15.11 Chemical Nature of Lignocellulose 365
 15.11.1 Cellulose ... 365
 15.11.2 Hemicellulose .. 366
 15.11.3 Lignin .. 367
15.12 Biodegradation of Biomass ... 368
15.13 Conclusions .. 369
References ... 369

16 The Termite Gut Habitat: Its Evolution and Co-Evolution
Paul Eggleton

16.1 Introduction .. 373
16.2 Background: Some Definitions 373
 16.2.1 Termite Biology .. 373
 16.2.2 Which Environments? .. 374
 16.2.3 Community Ecology Definitions 375
16.3 Biodiversity of Termite Guts ... 377
16.4 The Termite Gut Habitat and its Evolution 382
16.5 Acquisition of Symbionts in Basal Dicyopterans 384
16.6 Evolution of Key Enzyme Systems: Endoglucanases and Nitrogenases ... 386
16.7 Blattabacterium .. 387
16.8 Parabasalids .. 388
16.9 Termitomyces ... 392
16.10 Spirochetes ... 393
16.11 Clostridiales ... 394
16.12 Archaea .. 395
16.13 Conclusions ... 398
References ... 400
Part III Modern Methods for Studying Intestinal Microbes

17 The Microbial Soil Flora: Novel Approaches for Accessing the Phylogenetic and Physiological Diversity of Prokaryotes 407
 Alexander H. Treusch, Christa Schleper
 17.1 Introduction .. 407
 17.2 The Modern Classical Approach 408
 17.3 How Many Prokaryotic Species Live in Soil? 409
 17.4 Molecular Approaches to Describe Microbial Diversity.... 411
 17.5 The Current Picture of Prokaryotic Diversity in Soil 413
 17.6 Studying Physiological Diversity 415
 17.7 Environmental Genomic Studies 417
 17.8 Conclusions ... 419
 References .. 420

18 Micromanipulation Techniques for the Isolation of Single Microorganisms 425
 Jürgen Fröhlich, Helmut König
 18.1 Introduction .. 425
 18.2 Micromanipulation Techniques 426
 18.2.1 Historical Perspective 426
 18.2.2 Modern Equipment ... 427
 18.3 Isolation Techniques ... 429
 18.3.1 Bactotip Method .. 429
 18.3.2 Membrane Method ... 431
 18.3.3 Efficiency of the Cloning Procedure 431
 18.3.4 Described Applications 432
 18.4 Laser Micromanipulation Systems 433
 18.4.1 Optical Tweezers .. 433
 18.4.2 Laser Microdissection 434
 18.5 Conclusions ... 434
 References .. 435

19 Localization and Visualization of Microbial Community Structure and Activity in Soil Microhabitats 439
 Michael Schmid, Draženka Selesi, Michael Rothballer, Michael Schloter, Natuschka Lee, Ellen Kandeler, Anton Hartmann
 19.1 Introduction .. 439
 19.2 Localization and Microvisualization Approaches 440
 19.3 In Situ Composition Analysis of Bacterial Communities 442
 19.3.1 The Fluorescence in Situ Hybridization (FISH) Technique ... 442
Intestinal Microorganisms of Termites and Other Invertebrates
König, H.; Varma, A. (Eds.)
2006, XXIV, 484 p. 93 illus., 7 illus. in color., Hardcover
ISBN: 978-3-540-28180-1