Contents

1. Introduction .. 1
 1.1 Computational Fluid Dynamics 1
 1.2 Levels of Approximation: General 2
 1.3 Statement of the Scale Separation Problem 3
 1.4 Usual Levels of Approximation 5
 1.5 Large-Eddy Simulation: from Practice to Theory.
 Structure of the Book 9

2. Formal Introduction to Scale Separation:
 Band-Pass Filtering .. 15
 2.1 Definition and Properties of the Filter
 in the Homogeneous Case 15
 2.1.1 Definition .. 15
 2.1.2 Fundamental Properties 17
 2.1.3 Characterization of Different Approximations 18
 2.1.4 Differential Filters 20
 2.1.5 Three Classical Filters for Large-Eddy Simulation .. 21
 2.1.6 Differential Interpretation of the Filters 26
 2.2 Spatial Filtering: Extension to the Inhomogeneous Case .. 31
 2.2.1 General .. 31
 2.2.2 Non-uniform Filtering Over an Arbitrary Domain .. 32
 2.2.3 Local Spectrum of Commutation Error 42
 2.3 Time Filtering: a Few Properties 43

3. Application to Navier–Stokes Equations 45
 3.1 Navier–Stokes Equations 46
 3.1.1 Formulation in Physical Space 46
 3.1.2 Formulation in General Coordinates 46
 3.1.3 Formulation in Spectral Space 47
 3.2 Filtered Navier–Stokes Equations in Cartesian Coordinates
 (Homogeneous Case) 48
 3.2.1 Formulation in Physical Space 48
 3.2.2 Formulation in Spectral Space 48
3.3 Decomposition of the Non-linear Term.

Associated Equations for the Conventional Approach 49
3.3.1 Leonard’s Decomposition 49
3.3.2 Germano Consistent Decomposition 59
3.3.3 Germano Identity .. 61
3.3.4 Invariance Properties 64
3.3.5 Realizability Conditions 72

3.4 Extension to the Inhomogeneous Case

for the Conventional Approach 74
3.4.1 Second-Order Commuting Filter 74
3.4.2 High-Order Commuting Filters 77

3.5 Filtered Navier–Stokes Equations in General Coordinates ... 77
3.5.1 Basic Form of the Filtered Equations 77
3.5.2 Simplified Form of the Equations –
Non-linear Terms Decomposition 78

3.6 Closure Problem .. 78
3.6.1 Statement of the Problem 78
3.6.2 Postulates .. 79
3.6.3 Functional and Structural Modeling 80

4. Other Mathematical Models for the Large-Eddy Simulation Problem .. 83
4.1 Ensemble-Averaged Models 83
4.1.1 Yoshizawa’s Partial Statistical Average Model 83
4.1.2 McComb’s Conditional Mode Elimination Procedure ... 84
4.2 Regularized Navier–Stokes Models 85
4.2.1 Leray’s Model .. 86
4.2.2 Holm’s Navier–Stokes-α Model 86
4.2.3 Ladyzenskaja’s Model .. 89

5. Functional Modeling (Isotropic Case) 91
5.1 Phenomenology of Inter-Scale Interactions 91
5.1.1 Local Isotropy Assumption: Consequences 92
5.1.2 Interactions Between Resolved and Subgrid Scales 93
5.1.3 A View in Physical Space 102
5.1.4 Summary .. 104
5.2 Basic Functional Modeling Hypothesis 104
5.3 Modeling of the Forward Energy Cascade Process 105
5.3.1 Spectral Models .. 105
5.3.2 Physical Space Models 109
5.3.3 Improvement of Models in the Physical Space 133
5.3.4 Implicit Diffusion: the ILES Concept 161
5.4 Modeling the Backward Energy Cascade Process 171
5.4.1 Preliminary Remarks 171
5.4 Deterministic Statistical Models
- 5.4.2 Deterministic Statistical Models: 172
- 5.4.3 Stochastic Models: 178

6. Functional Modeling:
Extension to Anisotropic Cases
- 6.1 Statement of the Problem: 187
- 6.2 Application of Anisotropic Filter to Isotropic Flow: 187
 - 6.2.1 Scalar Models: 188
 - 6.2.2 Batten's Mixed Space-Time Scalar Estimator: 191
 - 6.2.3 Tensorial Models: 191
- 6.3 Application of an Isotropic Filter to a Shear Flow: 193
 - 6.3.1 Phenomenology of Inter-Scale Interactions: 193
 - 6.3.2 Anisotropic Models: Scalar Subgrid Viscosities: 198
 - 6.3.3 Anisotropic Models: Tensorial Subgrid Viscosities: 202
- 6.4 Remarks on Flows Submitted to Strong Rotation Effects: 208

7. Structural Modeling
- 7.1 Introduction and Motivations: 209
- 7.2 Formal Series Expansions: 210
 - 7.2.1 Models Based on Approximate Deconvolution: 210
 - 7.2.2 Non-linear Models: 223
 - 7.2.3 Homogenization-Technique-Based Models: 228
- 7.3 Scale Similarity Hypotheses and Models Using Them: 231
 - 7.3.1 Scale Similarity Hypotheses: 231
 - 7.3.2 Scale Similarity Models: 232
 - 7.3.3 A Bridge Between Scale Similarity and Approximate Deconvolution Models. Generalized Similarity Models: 236
- 7.4 Mixed Modeling: 237
 - 7.4.1 Motivations: 237
 - 7.4.2 Examples of Mixed Models: 239
- 7.5 Differential Subgrid Stress Models: 243
 - 7.5.1 Deardorff Model: 243
 - 7.5.2 Fureby Differential Subgrid Stress Model: 244
 - 7.5.3 Velocity-Filtered-Density-Function-Based Subgrid Stress Models: 245
 - 7.5.4 Link with the Subgrid Viscosity Models: 248
- 7.6 Stretched-Vortex Subgrid Stress Models: 249
 - 7.6.1 General: 249
 - 7.6.2 S3/S2 Alignment Model: 250
 - 7.6.3 S3/ω Alignment Model: 250
 - 7.6.4 Kinematic Model: 250
- 7.7 Explicit Evaluation of Subgrid Scales: 251
 - 7.7.1 Fractal Interpolation Procedure: 253
 - 7.7.2 Chaotic Map Model: 254
257 Kerstein’s ODT-Based Method
259 Kinematic-Simulation-Based Reconstruction
260 Velocity Filtered Density Function Approach
261 Subgrid Scale Estimation Procedure
263 Multi-level Simulations
272 Direct Identification of Subgrid Terms
274 Linear-Stochastic-Estimation-Based Model
275 Neural-Network-Based Model
276 Implicit Structural Models
278 Local Average Method
278 Scale Residual Model
281 Dynamic Interpretation of the Large-Eddy Simulation
281 Static and Dynamic Interpretations: Effective Filter
283 Theoretical Analysis of the Turbulence Generated by Large-Eddy Simulation
288 Ties Between the Filter and Computational Grid.
290 Numerical Errors and Subgrid Terms
290 Ghosal’s General Analysis
294 Pre-filtering Effect
297 Conclusions
299 Remarks on the Use of Artificial Dissipations
303 Remarks Concerning the Time Integration Method
305 Statement of the Problem
305 Type of Information Contained in a Large-Eddy Simulation
306 Validation Methods
307 Statistical Equivalency Classes of Realizations
310 Ideal LES and Optimal LES
311 Mathematical Analysis of Sensitivities and Uncertainties in Large-Eddy Simulation
313 Correction Techniques
313 Filtering the Reference Data
314 Evaluation of Subgrid-Scale Contribution
315 Evaluation of Subgrid-Scale Kinetic Energy
318 Practical Experience
323 General Problem
323 Mathematical Aspects
323 Physical Aspects
10.2 Solid Walls
- **Statement of the Problem**: 326
- **A Few Wall Models**: 332
- **Wall Models: Achievements and Problems**: 351

10.3 Case of the Inflow Conditions
- **Required Conditions**: 354
- **Inflow Condition Generation Techniques**: 354

11. Coupling Large-Eddy Simulation with Multiresolution/Multidomain Techniques
- **Statement of the Problem**: 369
- **Methods with Full Overlap**
 - One-Way Coupling Algorithm: 372
 - Two-Way Coupling Algorithm: 372
 - FAS-like Multilevel Method: 373
 - Kravchenko et al. Method: 374
- **Methods Without Full Overlap**: 376
- **Coupling Large-Eddy Simulation with Adaptive Mesh Refinement**
 - Statement of the Problem: 377
 - Error Estimation: 378

12. Hybrid RANS/LES Approaches
- **Motivations and Presentation**: 383
- **Zonal Decomposition**
 - Statement of the Problem: 384
 - Sharp Transition: 385
 - Smooth Transition: 387
 - Zonal RANS/LES Approach as Wall Model: 388
- **Nonlinear Disturbance Equations**: 390
- **Universal Modeling**
 - Germano’s Hybrid Model: 392
 - Speziale’s Rescaling Method and Related Approaches: 393
 - Baurle’s Blending Strategy: 394
 - Arunajatesan’s Modified Two-Equation Model: 396
 - Bush–Mani Limiters: 397
 - Magagnato’s Two-Equation Model: 398
- **Toward a Theoretical Status for Hybrid RANS/LES Approaches**: 399

13. Implementation
- **Filter Identification. Computing the Cutoff Length**: 401
- **Explicit Discrete Filters**
 - Uniform One-Dimensional Grid Case: 404
 - Extension to the Multi-Dimensional Case: 407
A. Statistical and Spectral Analysis of Turbulence 495
 A.1 Turbulence Properties 495
 A.2 Foundations of the Statistical Analysis of Turbulence 495
 A.2.1 Motivations .. 495
 A.2.2 Statistical Average: Definition and Properties 496
 A.2.3 Ergodicity Principle 496
 A.2.4 Decomposition of a Turbulent Field 498
 A.2.5 Isotropic Homogeneous Turbulence 499
 A.3 Introduction to Spectral Analysis
 of the Isotropic Turbulent Fields 499
 A.3.1 Definitions .. 499
 A.3.2 Modal Interactions 501
 A.3.3 Spectral Equations 502
 A.4 Characteristic Scales of Turbulence 504
 A.5 Spectral Dynamics of Isotropic Homogeneous Turbulence 504
 A.5.1 Energy Cascade and Local Isotropy 504
 A.5.2 Equilibrium Spectrum 505

B. EDQNM Modeling ... 507
 B.1 Isotropic EDQNM Model 507
 B.2 Cambon's Anisotropic EDQNM Model 509
 B.3 EDQNM Model for Isotropic Passive Scalar 511

Bibliography .. 513

Index ... 553
Large Eddy Simulation for Incompressible Flows
An Introduction
Sagaut, P.
2006, XXIX, 558 p., Hardcover
ISBN: 978-3-540-26344-9