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Gargantuan Computing—GRIDs and P2P

9.1 Introduction

In this chapter we are going to consider GCaP capacity planning techniques
for gargantuan-scale computer systems such as so-called peer-to-peer (P2P)
networks and computational GRID networks. One of the best known working
examples of a GRID-style computing system is SETI@Home (Search for Ex-
traterrestrial Intelligence at Home), where a scientific workload, viz., process-
ing radio-telescope signals, is farmed out to a gargantuan number of floating-
point operations per second (FLOPS) in the guise of millions of otherwise idle
personal computers—many being home PCs.

One of the best known working examples of a P2P-style computing system
is Skype (www.skype.com), which allows millions of people to use their PCs
like a free telephone by forming its own gargantuan network (Fig. 9.1) which
supports the voice over Internet Protocol (VOIP). Other well-known P2P ar-
chitectures include Gnutella, Napster, Freenet, Limewire, Kazaa, BitTorrent,
instant messaging, WiFi, PDAs and even cellphones. Mnay of these architec-
tures have progressed from simple file transfer protocols to a viable means
for distribution of applications such as games, movies, and even operating
systems.

This class of system offers the potential for very large-scale implemen-
tations. Consequently, it is appropriate to draw on the concepts of system
scalability developed in Chap. 4 as well as the concepts of virtualization devel-
oped in Chap. 7. The general goal for these architectures is to enable scalable
virtual organizations that can provide a set of well-defined services.

Key to the performance of these systems is the particular choice of network
topology and its associated bandwidth. To assess the scalability of network
bandwidth, this chapter draws on performance bounding techniques described
in (Gunther 2005a, Chap. 5). We shall apply those same techniques to the per-
formance analysis of a particular P2P network called Gnutella (commencing
in Sect. 9.3) since the pros and cons of its capacity have been so well docu-
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mented. First, we review some of the distinctions between GRIDs and P2P
networked computer systems.

9.2 GRIDs vs. P2P

P2P networks and GRIDs share the common focus of harnessing resources
across multiple administrative domains. Therefore, they may be distinguished
in the following way:

GRID: Supports a variety of applications with a focus on providing infras-
tructure with quality of service to moderate-sized, homogeneous, and par-
tially trusted communities (Foster 2005). Grid toolkits provide secure ser-
vices for submitting batch jobs or executing interactive applications. The
network architecture tends to be more centralized, hierarchical, and static.

P2P: Support intermittent participation in vertically integrated applications
for much larger communities of untrusted, anonymous individuals. P2P
systems provide protocols for sharing and exchanging data among nodes.
The network architecture tends to be more decentralized, and dynamics
require resource discovery.

It should be kept in mind that both these technologies are very much in the
process of evolving and have by no means reached a final form. Because they
are likely to become more ubiquitous, it is important for our purpose as GCaP
planners to understand something about them.

Fig. 9.1. The Skype network showing the network connectivity between its three
main entities: supernodes (black circles), ordinary nodes (gray circles), and a login
server (gray octagon)
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GRID computing is focused on scientific and engineering applications and
attempts to provide diverse resources that interoperate. The concept behind
the GRID is analogous to the electrical power grid. It is available on demand
and it does not matter where you are. When you throw the switch, you expect
the light to come on. Consequently, GRIDs should be built from standard
interfaces and protocols, and the Open Grid Services Architecture (OGSA)
provides The Globus Toolkit as an implementation of such a standard based on
Web services and technologies. OGSA is a product of the GRID community
at large, and it has a major focal point in the Global Grid Forum (GGF).
Members of the Globus Alliance have made significant contributions to the
development of OGSA. The interested reader can find more information about
goals, toolkits, and implementations at the OGSA website www.globus.org/
ogsa.

These technologies are not mutually exclusive. The P2P model could help
to ensure GRID scalability. Architects could employ P2P technologies and
techniques to implement decentralized GRID systems in order to avoid or al-
leviate performance bottlenecks. A recent example of this approach is GRID-
nut (Talia and Trunfio 2004) based on Clip2, the original Gnutella protocol
specification www9.limewire.com/developer/gnutella protocol 0.4.pdf,
to which we now turn our attention.

9.3 Analysis of Gnutella

The Gnutella network is a class of open-source virtual networks known as
peer-to-peer networks. Compared to the more ubiquitous client–server dis-
tributed architectures, every P2P node (or servant) can act as both a client
and a server. Many client-server applications, e.g., commercial databases, have
multiple clients accessing a centralized server (see Gunther 2005a, Chap. 9).
Conversely, P2P network applications are usually completely decentralized.

Finding applications that can make efficient use of P2P is the current
gating factor for their widespread adoption. So far, P2P networks have been
employed for such applications as the Napster (www.napster.com) music file-
sharing service and the SETI@Home project (setiathome.berkeley.edu), al-
though both those implementations rely on a significant centralized server
component.

The initial release of Gnutella in 2000 led to the perception that the intrin-
sic architecture may not be capable of scaling to meet the sharing demands of
millions of anticipated1 users. Similar concerns about scalability have arisen
in the context of hypergrowth traffic impinging on popular e-commerce Web
sites (see Chap. 8). Based on measurements of popular queries, it was proposed
that Gnutella scaling problems could be ameliorated through the implemen-
tation of appropriate caching strategies. Other measurements indicated that
1 In 2001, the size of the Napster network was 160,000 simultaneous users, down

from a peak of 1.6 million reported by Webnoize in February, 2001.
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there were more readers than writers involved in file sharing. They suggested
that a propensity for reading could lead to higher than expected load on
the P2P network, thereby degrading its performance as well as increasing its
vulnerability to fragmentation.

A mathematical analysis by Ritter (2002) (one of the original developers
of Napster) presented a detailed numerical argument demonstrating that the
Gnutella network could not scale to the capacity of its competitor, 2 the
Napster network. Essentially, that model showed that the Gnutella network is
severely bandwidth-limited long before the P2P population reaches a million
peers. In each of these previous studies, the conclusions have overlooked the
intrinsic bandwidth limits of the underlying topology in the Gnutella network:
a Cayley tree (Rains and Sloane 1999) (see Sect. 9.4 for the definition).

Trees are known to have lower aggregate bandwidth than higher dimen-
sional topologies, e.g., hypercubes and hypertori. Studies of interconnection
topologies in the literature have tended to focus on hardware implementa-
tions (see, e.g., Culler et al. 1996; Buyya 1999), which are generally limited
by the cost of the chips and wires to a few thousand nodes. P2P networks,
on the other hand, are intended to support from hundreds of thousands to
millions of simultaneous peers, and since they are implemented in software,
hyper-topologies are relatively unfettered 3 by the economics of hardware.

In this chapter, we analyze the scalability of several alternative topologies
and compare their throughput up to 2–3 million peers. The virtual hypercube
and the virtual hypertorus offer near-linear scalable bandwidth subject to
the number of peer TCP/IP connections that can be simultaneously kept
open. We adopt the abbreviation hypernet for these alternative topologies.
The assumptions about the distribution of peer activity are similar to those
employed by Ritter (2002). This is appropriate since our purpose is to rank the
relative performance of these hypernets rather than to predict their absolute
performance.

9.4 Tree Topologies

In the subsequent discussion, the P2P network is treated as a graph, i.e., a set
nodes or vertices connected by a set of edges or links. The nodes correspond
to network peers, and the links to the links to network connections.

Because the tree structure of the Gnutella network has been such a hidden
determinant underlying the conclusions drawn in previous scalability studies,
we commence our performance comparisons by distinguishing clearly among
2 At the height of the media attention, Napster’s legal problems drove some 50,000

users per day over to Gnutella such that peers connected by 56 Kbps phone lines
caused the P2P network to fragment into disconnected “islands” of about 200
peers.

3 As the SETI@Home project has demonstrated, 2.8 million desktops (and 10
PetaFLOPS) can be harnessed for free.
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the relevant tree topologies. Topologically, all trees are planar and thus have
d = 2 spatial dimensions.

9.4.1 Binary Tree

The binary tree is familiar in the computing context by virtue of its ubiquity
as a parsing and storage data structure. There is a unique root node that is
connected only to two sibling nodes, and each of those siblings is connected
to another pair of sibling nodes, and so on. At each level h in the tree, there
are 2h nodes. Therefore, the number of nodes grows as a binary exponential
number. Because of its relatively sparse nodal density, the binary tree is rarely
employed as a bona fide interconnection network.

9.4.2 Rooted Tree

A rooted tree is simply the generalization of a binary tree in which each node
(other than the root) has a vertex of degree v. The total number of nodes is
the sum of a geometric series:

Nbin(h) =
vh − 1
v − 1

. (9.1)

9.4.3 Cayley Tree

A Cayley tree (Rains and Sloane 1999) has no root. Recalling the binary tree,
what was the root of the parent binary tree now has a link to an another
binary subtree of height one less than the parent. All nodes thus become
trivalent with v = 3 at every level. More generally, for a v-valent tree, the
total number of nodes is given by:

Ncay(h) = 1 +
∑

v (v − 1)h−1 , (9.2)

and therefore is denser than the number of nodes in ( 9.1).
This is the central formula used in the scalability analysis of Ritter (2002).

The network he analyzed is thus a Cayley tree with vertex degree v cor-
responding to the number of open network connections per servant. Ritter
analyzed valences in the range v = 4 . . . 8; the former value being the default
setting in the original Gnutella release, and the latter more closely resembling
the number of peers claimed for the contemporaneous Napster network.

9.5 Hypernet Topologies

An alternative to bandwidth-limited trees is a topology with higher dimension-
ality. We examine the performance attributes of two hypernets in particular:
the binary hypercube and the hypertorus, each in d dimensions.
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9.5.1 Hypercube

In a Boolean or binary hypercube each node forms the vertex of a d-
dimensional cube. The number of nodes is simply 2d, and the degree of each
vertex v is equal to the dimensionality d of the network. Hence, each node can
be enumerated or addressed using a base-2 (binary) d-digit number. Moreover,
since neighboring nodes differ in address by only 1 digit, sending a message
on the hypercube becomes a simple matter of shifting successive bits as the
binary address passes each node between source and destination.

In d = 3 dimensions the hypercube is simply a cube. Each vertex has
degree v = 3, so there are 23 = 8 nodes. A 4-dimensional hypercube, can
be visualized as spatially translating a 3-cube such that the locus of its four
vertices trace out the additional connections.

9.5.2 Hypertorus

A d-dimensional hypertorus is a d-dimensional grid with each node connected
to a ring of nodes in each of the d orthogonal dimensions. The hypertorus re-
duces to the binary hypercube when there are only two nodes in each ring. The
simplest visualization is, once again, in three dimensions. A two-dimensional
grid is first wrapped about one axis such the edges join to form a tube. The
tube is wrapped about the orthogonal axis to form a ring such that the open
ends of the tube become joined. The result is a 3-torus, otherwise known as a
donut.

All of these topologies fall into a class known as single stage networks, and
they are relatively easy to implement in software. The more exotic topologies,
such as cube-connected cycles, butterflies, and other multistage networks, are
not considered here because they are likely to be more difficult to implement.

9.6 Capacity Metrics

9.6.1 Network Diameter

The notion of a network diameter is analogous to the diameter for a circle.
There, it is the maximum chordal length between two points on the circumfer-
ence. For a network, it is the maximum number of communication links that
must be traversed to send a message to any node along the shortest path. It
represents a lower bound on the latency to propagate messages throughout
the entire network. In 1997 the Web was estimated to comprise more than
half a million sites (Gray 1996). By 2001, it was estimated (OCLC 2004) to
have grown to 3.1 million publicly accessible sites.

The diameter of the Web has been estimated to be about 20 hops. If the
Web is modeled as a Cayley tree, its height would be half the diameter, i.e.,
h = δ/2 = 10 hops (Table 9.1). A vertex degree of 5 (connections per node)
would contain just under half a million nodes, while a vertex degree of 6 would
contain nearly 3 million (2,929,687) nodes.
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Table 9.1. Network diameter

Topology δ

Tree 2h
Hypercube d

Torus dN1/d/4

9.6.2 Total Nodes

Next, we determine the total number of peer nodes in the P2P network. For
a binary tree:

N(h) =
h∑

k=1

2k−1 . (9.3)

For a d-dimensional binary hypercube the number of nodes is 2d.

9.6.3 Path Length

The path length is the maximal distance between a leaf node and the root. For
a tree, it is half the diameter. The path length corresponds the peer horizon
used by (Ritter 2002) in his analysis. A better measure of network latency is
the average number of hops H, which we shall define shortly.

9.6.4 Internal Path Length

The internal path length is the total number of paths between all nodes. For
a binary tree of depth h, the total number of paths is:

P (h) =
h∑

k=1

k N(k) . (9.4)

9.6.5 Average Hop Distance

Since the network diameter is a maximal distance, it tends to overestimate
message latency. A better measure is the average number of hops between
source and destination. This quantity is found by dividing the internal path
length in (9.4) by the total number of nodes in (9.3)

H =
P

N
. (9.5)

It corresponds to the average number of network hops traversed by a P2P
query.
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9.6.6 Network Links

This is a measure of the number of physical network links. As revealed in
Table 9.2, L scales with the number of physical nodes N for the topologies we
are considering.

Table 9.2. Number of network links

Topology L

Tree Ntree

Hypercube dNcube/2
Torus dNtorus

9.6.7 Network Demand

The transit frequency across a link flink is a measure of the average query size
per link. Under the assumption of uniform message routing, it can be defined
as:

flink =
H

L
. (9.6)

If the latency across a link is denoted by Slink, then the total service de-
mand (Gunther 2005a, Chap. 2) is:

Dlink = flink Slink . (9.7)

For simplicity and without loss of generality, we normalize the network de-
mand to unit periods, i.e., Slink = 1.

9.6.8 Peer Demand

In a manner similar to the definition for the time spent on a link Slink, we
define Speer for node latency. Under the assumption of uniform message rout-
ing:

fpeers =
1
N

, (9.8)

and the total peer service demand is:

Dpeers =
Speer

N
. (9.9)

Again, we normalize the peer demand to unit periods (Speer = 1) in the
subsequent discussion.
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9.6.9 Bandwidth

It follows from Little’s law, U = XD (Gunther 2005a, p. 44) that when any
node in the network reaches saturation i.e., U = 1, the maximum in the system
throughput is determined by:

Xmax =
1

Max(Dpeers, Dlink1, Dlink2, ...)
. (9.10)

The node with the longest service demand Dmax is the system bottleneck. The
service demand at the bottleneck therefore determines the maximum system
throughput. With these metrics defined, we are in a position to compare the
asymptotic performance of each of the topologies described in Sects. 9.4 and
9.5.

9.7 Relative Bandwidth

Since we are interested in network scalability up to a few million peers, it
is sufficient to base the comparison on the asymptotic network throughput
defined in (9.10). In particular, we will rank the above hypernets according
to their relative maximal bandwidth,

Xrelative = Xmax(N)/N , (9.11)

where N is the number of peers in the horizon (Table 9.3 at the end of this
section). Xrelative = 1.0 corresponds to linear scalability since Xmax = N in
(9.11).

In several respects our approach is similar to that taken by (Culler et al.
1996) for their LogP model of assessing parallel hardware performance. In
both approaches, the respective network topology enters into the performance
model via the network demand defined in Sects. 9.7 and 9.9.

9.7.1 Cayley Trees

First, we consider the relative performance of tree topologies. Figure 9.2 shows
the normalized bandwidths of a fourth-degree rooted tree, a 4-valent Cayley
tree and an 8-valent Cayley tree.

The 4-valent Cayley tree represents the default peer connectivity in the
original release of Gnutella. Similarly, the 8-valent Cayley tree corresponds to
Ritter’s comparison with Napster scalability. The curves in Fig. 9.2 terminate
at different peer populations because the population is an integral multiple
which is dramatically affected by the vertex degree and the height of the tree.

We see immediately that the 8-valent Cayley tree has the greatest band-
width up through 2 million peers. The 4-valent Cayley tree has the lowest
bandwidth, even lower than the rooted tree. This follows from the fact that
at its root the 4-tree has the same connectivity as the 4-Cayley tree, but all
its descendants have vertices of 5 degrees. Even for the 8-Cayley, at 2 million
peers the bandwidth is less than one quarter of linear scalability.
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Fig. 9.2. Relative throughput of binary and Cayley trees

9.7.2 Trees and Cubes

We next consider the relative performance of high-degree trees and hyper-
cubes. In particular, Fig. 9.3 shows the normalized bandwidths for an 8-Cayley
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Fig. 9.3. Relative throughput of Cayley trees and hypercubes
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(the best throughput of the trees considered in Fig. 9.2), a 20-Cayley, and a
binary hypercube. The d-dimensional hypercube clearly exhibits superior scal-
ability.

9.7.3 Cubes and Tori

Of these high-order topologies, the binary hypercube offers linearly scalable
bandwidth beyond one million active peers (Fig. 9.4). The ten-dimensional
hypertorus has comparable scalability up to one million peers but degrades
beyond that point. The three-dimensional hypertorus is also shown for com-
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Fig. 9.4. Relative throughput of hypercubes and hypertori

parison since that topology has been used in large-scale hardware implemen-
tations up to several hundred nodes per cluster, e.g., HP NonStop s88000
server (formerly the Tandem Himalaya).
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9.7.4 Ranked Performance

The main results of our analysis are summarized in Table 9.3, which shows
each of the topologies ranked by their relative bandwidth as defined in (9.11).
The 20-dimensional hypercube outranks all other contenders on the basis of
query throughput. For an horizon containing 2 million peers, each servant
must maintain 20 open connections, on average. This is well within the capac-
ity limits of most TCP/IP implementations. The 10-dimensional hypertorus
is comparable to the 20-hypercube in bandwidth up to an horizon of 1 mil-
lion peers but falls off by almost 10% at 2 million peers. The 10-torus is also
arguably a more difficult topology to implement.

Table 9.3. Topologies ranked by maximal relative bandwidth

Network Connections Hops to Peers ×106 Relative (%)
topology per peer horizon in horizon bandwidth

20-Cube 20 10 2.1 100
10-Torus 20 11 2.1 93
5-Torus 10 23 2.1 22

20-Cayley 20 6 2.8 16
8-Cayley 8 8 1.1 13

4-Tree 4 11 1.4 12
3-Torus 6 96 2.1 10

4-Cayley 4 13 1.1 8

The 20-valent Cayley tree is included since the number of connections per
peer is the same as that for the 20-cube and the 10-torus. An horizon of 6
hops was used for comparison because the peer population is only 144,801
nodes at 5 hops. Similarly for 8-Cayley, a 9-hop horizon would contain 7.7
million peers. These large increments are a direct consequence of the high
vertex degree per node.

The 4-Cayley (modeling early Gnutella) and 8-Cayley (modeling the Nap-
ster population) show relatively poor scalability at 1 million peers. Even dou-
bling the number of connections per peer produces slightly better than 50%
improvement in throughput. This confirms the conclusions reached by Ritter
(2002) and, moreover, supports our proposal to consider hypernet topologies.

9.8 Summary

Previous studies of Gnutella scalability have tended to overlook the intrinsic
bandwidth limits of the underlying tree topology. The most thorough and
accurate of these studies is that presented by Ritter (2002). Unfortunately,
his analysis could be accused of straining at a gnat. As a viable candidate
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for massively scalable bandwidth, our analysis demonstrates that trees are
essentially dead wood.

Conversely, by going to higher dimensional virtual networks (and the hy-
percube in particular) near linear scalability can be achieved for populations
on the order of several million peers each with only 20 open connections. Ac-
cording to Sect. 9.6, this level of scalability would already match the number
of nodes present in the entire Web.

The dominant constraint for hardware implementations of high-dimensional
networks is the cost of the physical wires on the interconnect backplane. Since
the hypernets discussed here would be implemented in software, no such con-
straints would prevent reaching the desired level of scalability. In this sense,
hypernets appear to offer good (g)news for Gnutella-like P2P networks.
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