Contents

1 Introduction .. 1
 1.1 Mind, Brain, and Artificial Interpretation 1
 1.2 Multi-Disciplinary Nature of the Research 2
 1.3 The Stance to Conquest the Intellectual Giant 3
 1.4 The Artificial Mind System Based Upon Kernel Memory Concept 4
 1.5 The Organisation of the Book .. 6

Part I The Neural Foundations

2 From Classical Connectionist Models to Probabilistic/Generalised Regression Neural Networks (PNNs/GRNNs) 11
 2.1 Perspective .. 11
 2.2 Classical Connectionist/Artificial Neural Network Models 12
 2.2.1 Multi-Layered Perceptron/Radial Basis Function Neural Networks, and Self-Organising Feature Maps 12
 2.2.2 Associative Memory/Hopfield’s Recurrent Neural Networks ... 12
 2.2.3 Variants of RBF-NN Models .. 13
 2.3 PNNs and GRNNs .. 13
 2.3.1 Network Configuration of PNNs/GRNNs 15
 2.3.2 Example of PNN/GRNN – the Celebrated Exclusive OR Problem ... 17
 2.3.3 Capability in Accommodating New Classes within PNNs/GRNNs (Hoya, 2003a) ... 19
 2.3.4 Necessity of Re-accessing the Stored Data 20
 2.3.5 Simulation Example ... 20
 2.4 Comparison Between Commonly Used Connectionist Models and PNNs/GRNNs .. 25
XIV Contents

2.5 Chapter Summary .. 29

3 The Kernel Memory Concept – A Paradigm Shift
 from Conventional Connectionism 31
 3.1 Perspective .. 31
 3.2 The Kernel Memory ... 31
 3.2.1 Definition of the Kernel Unit 32
 3.2.2 An Alternative Representation of a Kernel Unit ... 36
 3.2.3 Reformation of a PNN/GRNN 37
 3.2.4 Representing the Final Network Outputs
 by Kernel Memory ... 39
 3.3 Topological Variations in Terms of Kernel Memory 41
 3.3.1 Kernel Memory Representations
 for Multi-Domain Data Processing 41
 3.3.2 Kernel Memory Representations
 for Temporal Data Processing 47
 3.3.3 Further Modification
 of the Final Kernel Memory Network Outputs 49
 3.3.4 Representation of the Kernel Unit Activated
 by a Specific Directional Flow 52
 3.4 Chapter Summary .. 57

4 The Self-Organising Kernel Memory (SOKM) 59
 4.1 Perspective .. 59
 4.2 The Link Weight Update Algorithm (Hoya, 2004a) 60
 4.2.1 An Algorithm for Updating Link Weights
 Between the Kernels 60
 4.2.2 Introduction of Decay Factors 61
 4.2.3 Updating Link Weights Between (Regular) Kernel
 Units and Symbolic Nodes 62
 4.2.4 Construction/Testing Phase of the SOKM 63
 4.3 The Celebrated XOR Problem (Revisited) 65
 4.4 Simulation Example 1 – Single-Domain Pattern Classification . 67
 4.4.1 Parameter Settings 67
 4.4.2 Simulation Results 68
 4.4.3 Impact of the Selection σ Upon the Performance ... 69
 4.4.4 Generalisation Capability of SOKM 71
 4.4.5 Varying the Pattern Presentation Order 72
 4.5 Simulation Example 2 – Simultaneous Dual-Domain
 Pattern Classification 73
 4.5.1 Parameter Settings 74
 4.5.2 Simulation Results 74
 4.5.3 Presentation of the Class IDs to SOKM 74
 4.5.4 Constraints on Formation of the Link Weights 75
 4.5.5 A Note on Autonomous Formation of a New Category .. 76
Contents

4.6 Some Considerations for the Kernel Memory in Terms of Cognitive/Neurophysiological Context .. 77
4.7 Chapter Summary .. 79

Part II Artificial Mind System

5 The Artificial Mind System (AMS), Modules, and Their Interactions .. 83
5.1 Perspective .. 83
5.2 The Artificial Mind System – A Global Picture 84
 5.2.1 Classification of the Modules Functioning
 With/Without Consciousness 86
 5.2.2 A Descriptive Example ... 87
5.3 Chapter Summary .. 93

6 Sensation and Perception Modules 95
6.1 Perspective .. 95
6.2 Sensory Inputs (Sensation) ... 96
 6.2.1 The Sensation Module – Given as a Cascade of Pre-processing Units.................................. 97
 6.2.2 An Example of Pre-processing Mechanism – Noise Reduction for Stereophonic Speech Signals (Hoya et al., 2003b; Hoya et al., 2005, 2004c) 98
 6.2.3 Simulation Examples .. 105
 6.2.4 Other Studies Related to Stereophonic Noise Reduction 113
6.3 Perception – Defined as the Secondary Output of the AMS 114
 6.3.1 Perception and Pattern Recognition 114
6.4 Chapter Summary .. 115

7 Learning in the AMS Context ... 117
7.1 Perspective .. 117
7.2 The Principle of Learning .. 117
7.3 A Descriptive Example of Learning 119
7.4 Supervised and Unsupervised Learning in Conventional ANNs 121
7.5 Target Responses Given as the Result from Reinforcement ... 122
7.6 An Example of a Combined Self-Evolutionary
 Feature Extraction and Pattern Recognition
 Using Self-Organising Kernel Memory 123
 7.6.1 The Feature Extraction Part: Units 1)-3) 124
 7.6.2 The Pattern Recognition and Reinforcement Parts:
 Units 4) and 5) .. 125
 7.6.3 The Unit for Performing the Reinforcement Learning:
 Unit 5) .. 126
 7.6.4 Competitive Learning of the Sub-Systems 126
8 Memory Modules and the Innate Structure 135
8.1 Perspective ... 135
8.2 Dichotomy Between Short-Term (STM) and Long-Term Memory (LTM) Modules 135
8.3 Short-Term/Working Memory Module 136
8.3.1 Interpretation of Baddeley & Hitch’s Working Memory Concept in Terms of the AMS 137
8.3.2 The Interactive Data Processing: the STM/Working Memory ←→ LTM Modules 139
8.3.3 Perception of the Incoming Sensory Data in Terms of AMS 140
8.3.4 Representation of the STM/Working Memory Module in Terms of Kernel Memory 141
8.3.5 Representation of the Interactive Data Processing Between the STM/Working Memory and Associated Modules ... 143
8.3.6 Connections Between the Kernel Units within the STM/Working Memory, Explicit LTM, and Implicit LTM Modules ... 144
8.3.7 Duration of the Existence of the Kernel Units within the STM/Working Memory Module 145
8.4 Long-Term Memory Modules 146
8.4.1 Division Between Explicit and Implicit LTM 146
8.4.2 Implicit (Nondeclarative) LTM Module 147
8.4.3 Explicit (Declarative) LTM Module 148
8.4.4 Semantic Networks/Lexicon Module 149
8.4.5 Relationship Between the Explicit LTM, Implicit LTM, and Semantic Networks/Lexicon Modules in Terms of the Kernel Memory 149
8.4.6 The Notion of Instinct: Innate Structure, Defined as A Built-in/Preset LTM Module 151
8.4.7 The Relationship Between the Instinct: Innate Structure and Sensation Module 152
8.4.8 Hierarchical Representation of the LTM in Terms of Kernel Memory 153
8.5 Embodiment of Both the Sensation and LTM Modules – Speech Extraction System Based Upon a Combined Blind Signal Processing and Neural Memory Approach 155
8.5.1 Speech Extraction Based Upon a Combined Subband ICA and Neural Memory (Hoya et al., 2003c) 156
8.5.2 Extension to Convolutive Mixtures (Ding et al., 2004) . 164
8.5.3 A Further Consideration of the Blind Speech Extraction Model 167

8.6 Chapter Summary ... 168

9 Language and Thinking Modules 169

9.1 Perspective ... 169
9.2 Language Module .. 170
 9.2.1 An Example of Kernel Memory Representation – the Lemma and Lexeme Levels of the Semantic Networks/Lexicon Module 171
 9.2.2 Concept Formation .. 175
 9.2.3 Syntax Representation in Terms of Kernel Memory 176
 9.2.4 Formation of the Kernel Units Representing a Concept . 179
9.3 The Principle of Thinking – Preparation for Making Actions ... 183
 9.3.1 An Example of Semantic Analysis Performed via the Thinking Module 185
 9.3.2 The Notion of Nonverbal Thinking 186
 9.3.3 Making Actions – As a Cause of the Thinking Process . 186
9.4 Chapter Summary ... 186

10 Modelling Abstract Notions Relevant to the Mind and the Associated Modules 189

10.1 Perspective ... 189
10.2 Modelling Attention .. 189
 10.2.1 The Mutual Data Processing: Attention —— STM/Working Memory Module 190
 10.2.2 A Consideration into the Construction of the Mental Lexicon with the Attention Module 192
10.3 Interpretation of Emotion ... 194
 10.3.1 Notion of Emotion within the AMS Context 195
 10.3.2 Categorisation of the Emotional States 195
 10.3.3 Relationship Between the Emotion, Intention, and STM/Working Memory Modules 198
 10.3.4 Implicit Emotional Learning Interpreted within the AMS Context 199
 10.3.5 Explicit Emotional Learning 200
 10.3.6 Functionality of the Emotion Module 201
 10.3.7 Stabilisation of the Internal States 202
 10.3.8 Thinking Process to Seek the Solution to Unknown Problems 202
10.4 Dealing with Intention .. 203
Artificial Mind System
Kernel Memory Approach
Hoya, T.
2005, XXI, 270 p., Hardcover
ISBN: 978-3-540-26072-1