CONTENTS

CONTRIBUTORS V

PREFACE XV

MODERN METHODS FOR INVESTIGATING MAGNETISM

William D. Brewer

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Topics Treated</td>
<td>2</td>
</tr>
<tr>
<td>Modern Methods</td>
<td>2</td>
</tr>
<tr>
<td>Conclusions</td>
<td>36</td>
</tr>
<tr>
<td>References</td>
<td>37</td>
</tr>
</tbody>
</table>

PROBING MAGNETIC PHASES IN DIFFERENT SYSTEMS USING LINEAR AND NON LINEAR SUSCEPTIBILITY

A. Banerjee, A. Bajpai, and Sunil Nair

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>43</td>
</tr>
<tr>
<td>Probing Spin Glass and Superparamagnetic Systems</td>
<td>46</td>
</tr>
<tr>
<td>Probing Long Range Ordering</td>
<td>53</td>
</tr>
<tr>
<td>Investigating Weakened Charge Ordered State and Electronic Phase Separation</td>
<td>63</td>
</tr>
<tr>
<td>References</td>
<td>68</td>
</tr>
</tbody>
</table>

TRANSMISSION ELECTRON MICROSCOPY STUDY ON MANGANESE OXIDES

T. Asaka, T. Nagai, K. Kimoto, and Y. Matsui

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>Experiments</td>
<td>74</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>75</td>
</tr>
<tr>
<td>Conclusion</td>
<td>93</td>
</tr>
<tr>
<td>References</td>
<td>94</td>
</tr>
</tbody>
</table>
SINGLE CRYSTALS OF BILAYER MANGANITES

D. Prabhakaran and A.T. Boothroyd

Introduction 97
Experimental Details 100
Results and Discussion 101
Conclusions 112
References 113

GUTZWILLER-CORRELATED WAVE FUNCTIONS: APPLICATION TO FERROMAGNETIC NICKEL

Jörg Bünemann, Florian Gebhard, Torsten Ohm, Stefan Weiser, and Werner Weber

Introduction 117
Gutzwiller Variational Theory 120
Results for Ferromagnetic Nickel 124
Diagrammatic Approach 135
Exact Results for Infinite Coordination Number 138
Variational Ground-State Energy 141
Landau-Gutzwiller Quasi-particles 145
Outlook 148
References 149

CHEMISTRY OF HALF-METALLIC AND RELATED CATION ORDERED DOUBLE PEROVSKITES

M. Karppinen and H. Yamauchi

Introduction 153
Cation Ordering in the Perovskite Structure 155
B-Site Ordered Double Perovskites 157
A-Site Ordered Double Perovskites 171
References 179

DILUTE MAGNETIC SEMICONDUCTORS

Jairo Sinova and Tomas Jungwirth

Introduction 185
The Basic Picture of DMS 187
Theoretical Models of DMS 189
Transport Properties of DMS Systems 191
Summary 205
References 205
UNCONVENTIONAL MAGNETISM IN CARBON BASED MATERIALS

Tatiana Makarova

Introduction 209
Magnetic Properties of Diamond and Graphite 209
Graphite with Structural Defects 212
Experimental Data on High Temperature Magnetism in Graphitic Carbons 221
Nanotubes 228
Fullerenes 229
The Role of Impurities in the Magnetism of Carbon Structures 236
Possible Applications of Magnetic Carbon 241
References 242

ORBITAL AND SPIN ORDER IN THE TRIANGULAR S=1/2 LAYERED COMPOUND (Li,Na)NiO_2

S. de Brion, M.D. Núñez-Regueiro, and G. Chouteau

Introduction 247
Orbital Properties of NaNiO_2 250
Orbital Properties of LiNiO_2 252
Magnetic Properties of NaNiO_2 255
Magnetic Properties of LiNiO_2 256
Solid Solution of Li_{1-x}Na_{x}NiO_2 265
Conclusion 268
References 271

STRUCTURES AND ELECTROMAGNETIC PROPERTIES OF THE A-SITE ORDERED PEROVSKITE Manganite

Y. Ueda and T. Nakajima

Introduction 273
Sample Preparation 275
The A-Site Ordered Manganites RBaMnO_3 276
The A-Site Disordered Manganites R_{0.5}Ba_{0.5}MnO_3 285
Summary 292
References 293
THE LIMITS TO SPIN-POLARIZATION IN FINITE-TEMPERATURE
HALF-METALLIC FERROMAGNETS

P.A. Dowben and S.J. Jenkins

Introduction 295
The Problem with Magnons 296
The Problem with Spin-Polaronic Non-quasiparticle States 299
The Problem of Magnon-Phonon Coupling 300
The Problem of Interfaces 305
The Problem of Interface Composition 309
Experimental Proof Half-Metallic Character? 314
Summary 317
References 319

LAYERED COBALT OXIDES AS A THERMOELECTRIC MATERIAL

Ichiro Terasaki

Introduction 327
Brief Summary of Thermoelectrics 328
Layered Cobalt Oxides 332
Origin of the Large Thermopower 338
Unconventional Electronic States 339
Summary and Future Prospects 343
References 344

COMMENSURATE AND INCOMMENSURATE MAGNETISM
IN LAYERED ANTI-FERROMAGNETS

J. Chovan and N. Papanicolaou

Introduction 347
Symmetry Constraints in Ba,CuGe,O,
The KSEA Limit 352
Commensurate Phase 352
Nonlinear σ Model 355
Dynamics of the Commensurate Phase 357
Incommensurate Phases 361
In-Plane Magnetic Field 371
Magnetic Properties of K,V,O
Conclusion 381
References 383
SURFACE AND INTERFACE MAGNETISM ON THE ATOMIC SCALE

H. H. Bertschat

Introduction 503
Motivation 503
Historical Survey 505
Three Types of Principal Experiments 507
Combined Hyperfine Interactions and Perturbed Angular Correlation Spectroscopy (PAC) 508
Sample Preparation and Measurements at the Online Mass Separator ISOLDE/CERN 511
Adatoms on Ferromagnetic Surfaces 513
Coordination-Number Dependence of Magnetic Hyperfine Fields at Cd Impurities on Ni Surfaces 516
Symmetry Independence of Impurity-Induced Magnetic Units 521
Mixed Coordination Numbers 523
Conclusions and Outlook 525
References 527

MAGNETO–SUPERCONDUCTIVITY OF RUTHENO-CUPRATES

V.P.S. Awana

Introduction 531
Experimental Details 534
Results and Discussion 535
Summary and Concluding Remarks 567
References 570

SUPERCONDUCTIVITY AND MAGNETISM IN LADDER AND CHAIN COMPOUNDS-PHYSICS OF (Sr,Ca)14Cu24O41

M. Uehara, N. Motoyama, M. Matsuda, H. Eisaki, and J. Akimitsu

Introduction 573
Magnetism in the Edge-Sharing CuO2 Chains 579
Physical Properties of Two-Leg Ladders in (Sr,Ca)14Cu24O41 Under Ambient Pressure 587
Physical Properties of Two-Leg Ladders in (Sr,Ca)14Cu24O41 Under High Pressure 595
Summary of Spin Gap and Superconductivity of Two-Leg Ladder 603
References 606
AN EXPERIMENTAL REALIZATION OF THE SHAstry-SUTHERLAND MODEL

Hiroshi Kageyama

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>611</td>
</tr>
<tr>
<td>Geometrically Frustrated Spin Models</td>
<td>613</td>
</tr>
<tr>
<td>Crystal Structure</td>
<td>616</td>
</tr>
<tr>
<td>Single Crystal Growth</td>
<td>617</td>
</tr>
<tr>
<td>Spin-Gap Formation</td>
<td>619</td>
</tr>
<tr>
<td>Exact Dimer Singlet Ground State</td>
<td>622</td>
</tr>
<tr>
<td>Three-Dimensional-Shastry-Sutherland Lattice</td>
<td>624</td>
</tr>
<tr>
<td>Quantum Phase Transition at Zero Field</td>
<td>628</td>
</tr>
<tr>
<td>Extremely Localized Triplet Excitations</td>
<td>630</td>
</tr>
<tr>
<td>Multi-triplet Excitations</td>
<td>633</td>
</tr>
<tr>
<td>Quantized Magnetization Plateaus</td>
<td>636</td>
</tr>
<tr>
<td>Dzyaloshinsky–Moriya Interaction</td>
<td>641</td>
</tr>
<tr>
<td>Search for New Shastry-Sutherland Compounds</td>
<td>644</td>
</tr>
<tr>
<td>Conclusions</td>
<td>646</td>
</tr>
<tr>
<td>References</td>
<td>648</td>
</tr>
</tbody>
</table>

COLLECTIVE SPIN AND CHARGE EXCITATIONS IN $(\text{Sr,La})_{14-x}\text{Ca}_x\text{Cu}_{24}\text{O}_{41}$ QUANTUM SPIN LADDERS

A. Gozar and G. Blumberg

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\text{Sr,La}){14-x}\text{Ca}x\text{Cu}{24}\text{O}{41}$: The Structure and General Properties</td>
<td>653</td>
</tr>
<tr>
<td>Magnetic Properties of $\text{Sr}x\text{Cu}{24}\text{O}_{41}$</td>
<td>655</td>
</tr>
<tr>
<td>Effects of Temperature and Ca(La) Substitution on the Phononic and Magnetic Excitations in $\text{Sr}x\text{Cu}{24}\text{O}_{41}$</td>
<td>666</td>
</tr>
<tr>
<td>Density-Wave Correlations in Doped Two-Leg Ladders</td>
<td>674</td>
</tr>
<tr>
<td>Summary</td>
<td>692</td>
</tr>
<tr>
<td>References</td>
<td>693</td>
</tr>
</tbody>
</table>

ELECTRONIC PROPERTIES OF α'-NaV$_2$O$_5$

A. Gozar and G. Blumberg

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Properties of α'-NaV$_2$O$_5$ and Motivation for a Spectroscopic Study</td>
<td>697</td>
</tr>
<tr>
<td>Magnetic Raman Continuum in the High Temperature Phase $(T > 34 \text{ K})$</td>
<td>702</td>
</tr>
<tr>
<td>Collective Excitations in the Low Temperature Phase of NaV$_2$O$_5$ $(T < 34 \text{ K})$</td>
<td>717</td>
</tr>
<tr>
<td>Summary</td>
<td>732</td>
</tr>
<tr>
<td>References</td>
<td>733</td>
</tr>
</tbody>
</table>
COLLECTIVE MAGNETIC EXCITATIONS IN SrCu₂(BO₃)₂

A. Gozar and G. Blumberg

Introduction: Why SrCu₂(BO₃)₂ 735
Low Temperature Phononic Spectra in SrCu₂(BO₃)₂ 738
Magnetic Properties of SrCu₂(BO₃)₂ 741
Summary 753
References 754

MAGNETIC AND CHARGE CORRELATIONS IN La₂₋ₓNdₓSrₓCuO₄: RAMAN SCATTERING STUDY

A. Gozar, Seiki Komiya, Yoichi Ando, and G. Blumberg

The Phase Diagram and Structural Properties of the High Temperature Superconductor La₂₋ₓSrₓCuO₄ 755
Magnetic and Electronic Properties of Macroscopically Orthorhombic La₂₋ₓSrₓCuO₄ at Light Doping (0 < x < 0.03) 758
Spin and Lattice Dynamics at Commensurate x=1/8 Sr Doping in La₂₋ₓNdₓSrₓCuO₄ 776
Summary 786
References 787

SUBJECT INDEX 791