Contents

1 Introduction .. 1

2 Kohn’s Proof of the Hypoellipticity of the Hörmander Operators ... 11
 2.1 Vector Fields and Hörmander Condition 11
 2.2 Main Results in Hypoellipticity 12
 2.3 Kohn’s Proof ... 14

3 Compactness Criteria for the Resolvent of Schrödinger Operators 19
 3.1 Introduction ... 19
 3.2 About Witten Laplacians and Schrödinger Operators 20
 3.3 Compact Resolvent and Magnetic Bottles 22

4 Global Pseudo-differential Calculus 27
 4.1 The Weyl-Hörmander Pseudo-differential Calculus 27
 4.2 Basic Properties .. 29
 4.2.1 Composition 29
 4.2.2 The Algebra $\cup_{m \in \mathbb{R}} \text{Op} S^m_\varphi$ 30
 4.2.3 Equivalence of Quantizations 30
 4.2.4 $L^2(\mathbb{R}^d)$-Continuity 31
 4.2.5 Compact Pseudo-differential Operators 31
 4.3 Fully Elliptic Operators and Beals Type Characterization .. 31
 4.4 Powers of Positive Elliptic Operators 34
 4.5 Comments .. 37
 4.6 Other Types of Pseudo-differential Calculus 38
 4.7 A Remark by J.M. Bony About the Geodesic Temperance ... 39

5 Analysis of Some Fokker-Planck Operator 43
 5.1 Introduction .. 43
 5.2 Maximal Accretivity of the Fokker-Planck Operator 43
5.2.1 Accretive Operators 43
5.2.2 Application to the Fokker-Planck Operator 44
5.3 Sufficient Conditions for the Compactness
of the Resolvent of the Fokker-Planck Operator 46
5.3.1 Main Result 46
5.3.2 A Metric Adapted to the Fokker-Planck Equation
and Weak Ellipticity Assumptions 48
5.3.3 Algebraic Properties of the Fokker-Planck Operator .. 52
5.3.4 Hypoelliptic Estimates: A Basic Lemma 54
5.3.5 Proof of Theorem 5.8 55
5.4 Necessary Conditions
 with Respect to the Corresponding Witten Laplacian 58
5.5 Analysis of the Fokker-Planck Quadratic Model 59
5.5.1 Explicit Computation of the Spectrum 60
5.5.2 Improved Estimates for the Quadratic Potential 62
6 Return to Equilibrium for the Fokker-Planck Operator 65
6.1 Abstract Analysis 65
6.2 Applications to the Fokker-Planck Operator 69
6.3 Return to Equilibrium Without Compact Resolvent 70
6.4 On Other Links Between Fokker-Planck Operators
 and Witten Laplacians 71
6.5 Fokker-Planck Operators and Kinetic Equations 72
7 Hypoellipticity and Nilpotent Groups 73
7.1 Introduction ... 73
7.2 Nilpotent Lie Algebras 73
7.3 Representation Theory 74
7.4 Rockland’s Conjecture 76
7.5 Spectral Properties 77
8 Maximal Hypoellipticity for Polynomial
 of Vector Fields and Spectral Byproducts 79
8.1 Introduction .. 79
8.2 Rothschild-Stein Lifting and Towards a General Criterion ... 80
8.3 Folland’s Result 83
8.4 Discussion on Rothschild-Stein
 and Helffer-Métrié-Nourrigat Results 85
9 On Fokker-Planck Operators and Nilpotent Techniques 89
9.1 Is There a Lie Algebra Approach
 for the Fokker-Planck Equation? 89
9.2 Maximal Estimates for Some Fokker-Planck Operators 91
10 Maximal Microhypoellipticity for Systems
and Applications to Witten Laplacians 97
 10.1 Introduction ... 97
 10.2 Microlocal Hypoellipticity and Semi-classical Analysis 99
 10.2.1 Analysis of the Links 99
 10.2.2 Analysis of the Microhypoellipticity for Systems 101
 10.3 Around the Proof of Theorem 10.5 103
 10.4 Spectral By-products for the Witten Laplacians 106
 10.4.1 Main Statements 106
 10.4.2 Applications for Homogeneous Examples 107
 10.4.3 Applications for Non-homogeneous Examples 110

11 Spectral Properties of the Witten-Laplacians
in Connection with Poincaré Inequalities
for Laplace Integrals 113
 11.1 Laplace Integrals and Associated Laplacians 113
 11.2 Links with the Witten Laplacians 114
 11.2.1 On Poincaré and Brascamp-Lieb Inequalities 114
 11.2.2 Links with Spectra of Higher Order Witten Laplacians . 115
 11.3 Some Necessary and Sufficient Conditions
 for Polyhomogeneous Potentials 117
 11.3.1 Non-negative Polyhomogeneous Potential Near Infinity . 117
 11.3.2 Analysis of the Kernel 119
 11.3.3 Non-positive Polyhomogeneous Potential Near Infinity . 119
 11.4 Applications in the Polynomial Case 120
 11.4.1 Main Result 120
 11.4.2 Examples 121
 11.5 About the Poincaré Inequality for an Homogeneous Potential . 122
 11.5.1 Necessary Conditions 122
 11.5.2 Sufficient Conditions 124
 11.5.3 The Analytic Case 127
 11.5.4 Homotopy Properties 130

12 Semi-classical Analysis for the Schrödinger Operator:
Harmonic Approximation 133
 12.1 Introduction ... 133
 12.2 The Case of Dimension 1 133
 12.3 Quadratic Models 138
 12.4 The Harmonic Approximation, Analysis in Large Dimension .. 139

13 Decay of Eigenfunctions and Application to the Splitting .. 147
 13.1 Introduction ... 147
 13.2 Energy Inequalities 147
 13.3 The Agmon Distance 148
 13.4 Decay of Eigenfunctions for the Schrödinger Operator 149
13.5 Estimates on the Resolvent 151
13.6 WKB Constructions .. 152
13.7 Upper Bounds for the Splitting
 Between the Two First Eigenvalues 155
 13.7.1 Rough Estimates 155
 13.7.2 Towards More Precise Estimates 157
 13.7.3 Historical Remarks 157
13.8 Interaction Matrix for the Symmetric Double Well Problem . 157

14 Semi-classical Analysis and Witten Laplacians:
 Morse Inequalities ... 163
 14.1 De Rham Complex ... 163
 14.2 Useful Formulas ... 164
 14.3 Computation of the Witten Laplacian
 on Functions and 1-Forms 166
 14.4 The Morse Inequalities 167
 14.5 The Witten Complex 169
 14.6 Rough Semi-classical Analysis of the Witten Laplacian . 170

15 Semi-classical Analysis and Witten Laplacians:
 Tunneling Effects ... 173
 15.1 Morse Theory, Agmon Distance and Orientation Complex . 173
 15.1.1 Morse Function and Agmon Distance 173
 15.1.2 Generic Conditions on Morse Functions 174
 15.1.3 Orientation Complex 175
 15.2 Semi-classical Analysis of the Witten Laplacians 176
 15.2.1 One Well Reference Problems 176
 15.2.2 Improved Decay 177
 15.2.3 An Adapted Basis 178
 15.2.4 WKB Approximation 178
 15.3 Semi-classical Analysis of the Witten Complex 179

16 Accurate Asymptotics
 for the Exponentially Small Eigenvalues of $\Delta^{(0)}_{f,h}$ 181
 16.1 Assumptions and Labelling of Local Minima 181
 16.2 Main Result ... 183
 16.3 Proof of Theorem 16.4 in the Case of Two Local Minima . 184
 16.4 Towards the General Case 187

17 Application to the Fokker-Planck Equation 189

18 Epilogue ... 193

References .. 195

Index .. 205