Contents

1 Soil Factors Affecting Nutrient Bioavailability 1
N.B. Comerford

1.1 Introduction ... 1
1.2 Release of Nutrients from the Soil Solid Phase 2
1.3 Nutrient Movement Through the Soil Solution 5
1.4 Nutrient Uptake by the Root System 7
1.5 Modeling Nutrient Bioavailability 9
1.6 Summary ... 10
References ... 1

2 Decomposition and Mineralization of Nutrients from Litter and Humus .. 15
C.E. Prescott

2.1 Introduction ... 15
2.2 Decomposition ... 15
2.2.1 Early (Litter) Decomposition 16
2.2.1.1 Moisture .. 17
2.2.1.2 Temperature ... 17
2.2.1.3 Litter Quality .. 18
2.2.1.4 Nitrogen Availability 20
2.2.2 Completeness of Decomposition 21
2.2.3 Late-Stage Decomposition (Humus and Soil Organic Matter) 22
2.2.3.1 Moisture .. 22
2.2.3.2 Temperature ... 23
2.2.3.3 Humus Quality ... 24
2.2.3.4 Nitrogen Availability 24
3 Integrated Root Responses to Variations in Nutrient Supply

D. Robinson

3.1 Introduction .. 43
3.2 Spatial and Temporal Variations in Soil Nutrient Supplies ... 44
3.3 Single Roots and Root Systems 47
3.4 Local and Systemic Response Systems 50
3.4.1 Local Responses 50
3.4.2 Systemic Responses 51
3.5 Emergent Integration 55
3.6 Summary ... 57
References ... 58

4 Internal Regulation of Nutrient Uptake
by Relative Growth Rate and Nutrient-Use Efficiency 63

V.P. Gutschick, J.C. Pushnik

4.1 Introduction .. 63
4.2 Phenomenology of Uptake Rate Responding
to Nutrient-Use Efficiency and Growth Rate 65
4.2.1 The Evolutionary and Ecological Perspective
of Physiological Demand 65
4.2.2 A View from Physiology: Response of Growth Rate
to Nutrient Availability, Cost, and Utility 66
4.2.3 Does a Simple Model Predict an Optimal Uptake
Capacity and Root Allocation? 68
4.3 Toward a Model of Uptake Regulation in Response
to Nutrient Utility 71
4.3.1 Predicted Response to an Intrinsic, Physiological
or Developmental Limit on Relative Growth Rate 71
4.3.1.1 Do Internal N and Carbohydrate Pools Explain Responses
of V_{max} to Photosynthetic N Utility and to Developmental
Limitations on Relative Growth Rate? 73
5 Biological Nitrogen Fixation Associated with Angiosperms in Terrestrial Ecosystems 89

J.I. Sprent

5.1 Introduction 89
5.2 Cyanobacteria and Their Symbioses 91
5.2.1 Free-Living Nitrogen-Fixing Cyanobacteria 91
5.2.2 Cyanobacterial Symbioses 92
5.2.3 Cycads 92
5.2.4 Gunnera 93
5.3 Non-nodulating Associations Between Angiosperms and Non-photosynthetic Nitrogen-Fixing Microorganisms 94
5.3.1 Loose Associations 94
5.3.2 Endophytic Associations 95
5.3.2.1 Kallar Grass 95
5.3.2.2 Rice 95
5.3.2.3 Sugarcane 96
5.4 Nodulated Plants: Symbioses with Frankia and Rhizobia 96
5.4.1 Actinorhizal Plants 98
5.4.2 Parasponia 100
5.4.3 Legumes 100
5.5 Ecological Role and Uses of Nodulated Plants 103
5.5.1 Actinorhizal Plants 103
5.5.2 Legumes 104
5.5.2.1 Nodulated and Non-nodulated Plants 104
5.5.2.2 Geographical Trends 104
5.5.2.3 Dry, Flooded and Saline Environments 105
5.5.2.4 Possible Chemical Constraints 106
5.5.2.5 Rhizobial Constraints 106
8 The Efficiency of Nutrient Acquisition over the Life of a Root

D.M. Eissenstat, A. Volder

8.1 Introduction .. 185
8.2 Root Length and Absorptive Surface Area 186
8.2.1 Importance 186
8.2.2 Inconsistencies Between Root Length, Mycorrhizal Colonization and Observed Nutrient Uptake 187
8.2.3 Root Architecture and Variation Among Fibrous Roots in a Single Root System 188
8.2.4 Variation in Root Life Span in Different Environments and Among Species 189
8.3 Costs of Root Production and Maintenance over a Root’s Lifetime .. 191
8.3.1 Biomass Costs of Producing Root Absorptive Surface Area .. 191
8.3.1.1 Root:Shoot Biomass Partitioning 191
8.3.1.2 Specific Root Length 191
8.3.1.3 Root Hairs and Mycorrhizal Hyphae 192
8.3.2 Costs of Root Respiration 193
8.3.2.1 Construction Cost and Growth Respiration 193
8.3.2.2 Maintenance Respiration 194
8.3.2.3 Ion-Uptake Respiration 194
8.3.3 Cost of Mycorrhizal Colonization and Maintenance .. 195
8.3.4 Changes in C Costs as the Root Ages 195
8.3.5 Other Costs 197
8.4 Uptake of Mineral Nutrients over a Root’s Lifetime .. 198
 8.4.1 Initial Advantages to Root Growth .. 198
 8.4.2 Importance of Mycorrhizal Colonization .. 198
 8.4.3 Longevity of Root Tissues .. 200
 8.4.3.1 Overview .. 200
 8.4.3.2 Longevity of Root Hairs and Epidermis .. 200
 8.4.3.3 Longevity of Cortex ... 202
 8.4.3.4 Longevity of Xylem Vessels ... 203
 8.4.4 Changes in Nutrient Uptake Capacity as the Root Ages 203
 8.5 The Efficiency of Nutrient Acquisition over a Root’s Lifetime 205
 8.5.1 Efficiency Concepts and Model Simulations ... 205
 8.5.2 Problems Associated with Efficiency .. 207
 8.5.2.1 Efficiency Versus Effectiveness .. 207
 8.5.2.2 Problems of Currency .. 208
 8.6 Heterogeneous Soil .. 209
 8.6.1 Overview .. 209
 8.6.2 Effects of Water and Temperature .. 209
 8.6.3 Effects of Nutrient-Rich Patches ... 210
 8.7 Summary .. 212

References .. 212

9 Action and Interaction in the Mycorrhizal Hyphosphere –
 a Reevaluation of the Role of Mycorrhizas in Nutrient Acquisition and Plant Ecology ... 221
 R. FINLAY

 9.1 Introduction ... 221
 9.2 Mycorrhizal Symbiosis and Its Quantitative Effects on Plant Nutrition 224
 9.2.1 Mycorrhizal Symbiosis – an Overview ... 224
 9.2.2 Mycorrhizal Mycelia as Physical Extensions of Root Systems 229
 9.3 Qualitative Effects of Mycorrhizal Interactions with the Abiotic Environment 232
 9.3.1 Uptake and Utilisation of Organic Nutrients .. 232
 9.3.2 Weathering and Acquisition of Poorly Soluble Minerals 239
 9.4 Biotic Interactions ... 241
 9.4.1 Interactions with Bacteria ... 245
 9.4.2 Interactions with Fungi .. 251
 9.4.3 Interactions with Other Soil Organisms ... 253
 9.5 Multiplicity of Function – Non-nutritional Roles ... 254
 9.6 Implications for Nutrient Cycling and Plant Ecology 258
10 Effects of Soil Temperature on Nutrient Uptake
K.S. Pregitzer, J.S. King

10.1 Introduction
10.2 Dynamics of Soil Temperature
10.2.1 The Soil Energy Balance
10.2.2 Spatial and Temporal Variation in Soil Temperature
10.3 Soil Temperature Effects on Soil Physical and Chemical Properties
10.3.1 Soil Water
10.3.2 Nutrient Transport
10.3.3 Chemical Reactions
10.4 Soil Temperature Effects on Root Biology
10.4.1 Root Growth and Morphology
10.4.2 Root Physiology
10.5 Soil Temperature Effects on Soil Biology
10.5.1 Decomposition and Nutrient Mineralization
10.5.2 Soil Fauna
10.5.3 Symbiotic Relationships
10.6 Summary and Areas of Future Research
References

11 Nutrient Acquisition of Terrestrial Plants in a Changing Climate
D.G. Bielenberg, H. BassiriRad

11.1 Introduction
11.2 Elevated Tropospheric Ozone or Elevated UV-B Radiation
11.2.1 Extent of the Problem and Relevance to Nutrient Uptake
11.2.2 Direct Effects on Nutrient Uptake
11.2.2.1 Changes in Root-to-shoot Ratios, Morphology and Architecture
11.2.2.2 Changes in Root Respiration and Carbohydrate Supply to the Roots
References
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.2.3 Changes in Root Uptake Kinetics</td>
<td>314</td>
</tr>
<tr>
<td>11.2.2.4 Changes in Foliar Uptake/Leaching</td>
<td>315</td>
</tr>
<tr>
<td>11.2.3 Indirect Effects on Nutrient Uptake</td>
<td>315</td>
</tr>
<tr>
<td>11.3 Elevated Atmospheric CO₂ Concentration</td>
<td>317</td>
</tr>
<tr>
<td>11.3.1 Extent of the Problem and Relevance to Nutrient Uptake</td>
<td>317</td>
</tr>
<tr>
<td>11.3.2 Direct Effects of CO₂ on Plant Nutrient Uptake</td>
<td>317</td>
</tr>
<tr>
<td>11.3.2.1 Changes in Root-to-Shoot Ratios</td>
<td>317</td>
</tr>
<tr>
<td>11.3.2.2 Changes in Root Morphology and Architecture</td>
<td>319</td>
</tr>
<tr>
<td>11.3.2.3 Changes in Root Uptake Kinetics</td>
<td>320</td>
</tr>
<tr>
<td>11.3.3 Indirect Effects of CO₂ on Nutrient Availability at the Root Surface</td>
<td>322</td>
</tr>
<tr>
<td>11.4 Summary</td>
<td>322</td>
</tr>
<tr>
<td>References</td>
<td>323</td>
</tr>
</tbody>
</table>

Chapter 12

From Molecular Biology to Biogeochemistry: Toward an Integrated View of Plant Nutrient Uptake

H. BassiriRad

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>332</td>
</tr>
<tr>
<td>12.2 Nutrient Bioavailability</td>
<td>332</td>
</tr>
<tr>
<td>12.3 Plant Nutrient Demand and Use Efficiency</td>
<td>334</td>
</tr>
<tr>
<td>12.4 Root System Traits That Regulate Nutrient Acquisition</td>
<td>334</td>
</tr>
<tr>
<td>12.5 Global Change and Plant Nutrient Acquisition</td>
<td>336</td>
</tr>
<tr>
<td>12.6 Broader Issues and Directions for Future Research</td>
<td>337</td>
</tr>
<tr>
<td>References</td>
<td>339</td>
</tr>
</tbody>
</table>

Subject Index | 341 |
Nutrient Acquisition by Plants
An Ecological Perspective
BassiriRad, H. (Ed.)
2005, XVIII, 348 p., Hardcover
ISBN: 978-3-540-24186-7