Contents

1 Introduction 1

2 Electrodynamic Properties of a General Physical System 5
 2.1 The Maxwell Equations 5
 2.2 The System: Lagrangian and Hamiltonian Descriptions 6
 2.3 Polarization as a Statistical Property of a System 9

3 General Properties of the Linear Optical Response 11
 3.1 Linear Optical Properties 11
 3.1.1 Transmission and Reflection at the Boundary Between Two Media 14
 3.2 Microscopic Description of Linear Polarization 16
 3.3 Asymptotic Properties of Linear Susceptibility 17
 3.4 Local Field and Effective Medium Approximation in Linear Optics 19
 3.4.1 Homogeneous Media 19
 3.4.2 Two-Phase Media 21

4 Kramers-Kronig Relations and Sum Rules in Linear Optics 27
 4.1 Introductory Remarks 27
 4.2 The Principle of Causality 27
 4.3 Titchmarsh’s Theorem and Kramers-Kronig Relations 28
 4.3.1 Kramers-Kronig Relations for Conductors 29
 4.3.2 Kramers-Kronig Relations for the Effective Susceptibility of Nanostructures 30
 4.4 Superconvergence Theorem and Sum Rules 31
 4.5 Sum Rules for Conductors 33
 4.5.1 Sum Rules for the Linear Effective Susceptibilities of Nanostructures 33
 4.6 Integral Properties of Optical Constants 34
 4.6.1 Integral Properties of the Index of Refraction 35
 4.6.2 Kramers-Kronig Relations in Linear Reflectance Spectroscopy 39
4.7 Generalization of Integral Properties for More Effective Data Analysis 44
4.7.1 Generalized Kramers-Kronig Relations 45
4.7.2 Subtractive K-K Relations 47

5 General Properties of the Nonlinear Optical Response 49
5.1 Nonlinear Optics: A Brief Introduction 49
5.2 Nonlinear Optical Properties 51
5.2.1 Pump-and-Probe Processes 54
5.3 Microscopic Description of Nonlinear Polarization 56
5.4 Local Field and Effective Medium Approximation in Nonlinear Optics 58
5.4.1 Homogeneous Media 58
5.4.2 Two-Phase Media 60
5.4.3 Tailoring of the Optical Properties of Nanostructures 63

6 Kramers-Kronig Relations and Sum Rules in Nonlinear Optics 71
6.1 Introductory Remarks 71
6.2 Kramers-Kronig Relations in Nonlinear Optics: Independent Variables 72
6.3 Scandolo’s Theorem and Kramers-Kronig Relations in Nonlinear Optics 73
6.4 Kramers-Kronig Analysis of the Pump-and-Probe System 77
6.4.1 Generalization of Kramers-Kronig Relations and Sum Rules 79

7 Kramers-Kronig Relations and Sum Rules for Harmonic-Generation Processes 83
7.1 Introductory Remarks 83
7.2 Application of Scandolo’s Theorem to Harmonic-Generation Susceptibility 83
7.3 Asymptotic Behavior of Harmonic-Generation Susceptibility 84
7.4 General Kramers-Kronig Relations and Sum Rules for Harmonic-Generation Susceptibility 87
7.4.1 General Integral Properties of Nonlinear Conductors 89
7.5 Subtractive Kramers-Kronig Relations for Harmonic-Generation Susceptibility 90

8 Kramers-Kronig Relations and Sum Rules for Data Analysis: Examples 93
8.1 Introductory Remarks 93
8.2 Applications of Kramers-Kronig Relations for Data Inversion 93
8.2.1 Kramers-Kronig Inversion of Harmonic-Generation Susceptibility 94
8.2.2 Kramers-Kronig Inversion of the Second Power of Harmonic-Generation Susceptibility 96
8.3 Verification of Sum Rules for Harmonic-Generation Susceptibility 98
8.4 Application of Singly Subtractive Kramers-Kronig Relations 101
8.5 Estimates of the Truncation Error in Kramers-Kronig Relations 104
8.6 Sum Rules and Static Second-Order Nonlinear Susceptibility 106

9 Modified Kramers-Kronig Relations in Nonlinear Optics 109
9.1 Modified Kramers-Kronig Relations for a Meromorphic Nonlinear Quantity 109
9.2 Sum Rules for a Meromorphic Nonlinear Quantity 112

10 The Maximum Entropy Method: Theory and Applications 115
10.1 The Theory of the Maximum Entropy Method 115
10.2 The Maximum Entropy Method in Linear Optical Spectroscopy 117
10.2.1 Phase Retrieval from Linear Reflectance 117
10.2.2 Study of Surface Plasmon Resonance 120
10.2.3 Misplacement Phase Error Correction in Terahertz Time-Domain Spectroscopy .. 126
10.3 The Maximum Entropy Method in Nonlinear Optical Spectroscopy 128

11 Conclusions .. 133

A MATLAB® Programs for Data Analysis 137
A.1 Program 1: Estimation of the Imaginary Part via Kramers-Kronig Relations 137
A.2 Program 2: Estimation of the Real via Kramers-Kronig Relations 139
A.3 Program 3: Self-Consistent Estimate of the Real and Imaginary Parts of Susceptibility .. 141
A.5 Program 5: Estimation of the Real Part via Singly Subtractive Kramers-Kronig Relations 143

References .. 145

Index ... 159
Kramers-Kronig Relations in Optical Materials Research
Lucarini, V.; Saarinen, J.J.; Peiponen, K.-E.; Vartiainen, E.M.
2005, X, 162 p. 37 illus., Hardcover
ISBN: 978-3-540-23673-3