Contents

List of Contributors ... xvii

1 Neural Networks: An Overview
G. Dreyfus ... 1
1.1 Neural Networks: Definitions and Properties 2
1.1.1 Neural Networks ... 3
1.1.2 The Training of Neural Networks 12
1.1.3 The Fundamental Property of Neural Networks with Supervised Training: Parsimonious Approximation 13
1.1.4 Feedforward Neural Networks with Supervised Training for Static Modeling and Discrimination (Classification) 15
1.1.5 Feedforward Neural Networks with Unsupervised Training for Data Analysis and Visualization 21
1.1.6 Recurrent Neural Networks for Black-Box Modeling, Gray-Box Modeling, and Control 22
1.1.7 Recurrent Neural Networks Without Training for Combinatorial Optimization 23
1.2 When and How to Use Neural Networks with Supervised Training . 24
1.2.1 When to Use Neural Networks? 24
1.2.2 How to Design Neural Networks? 25
1.3 Feedforward Neural Networks and Discrimination (Classification) ... 32
1.3.1 What Is a Classification Problem? 33
1.3.2 When Is a Statistical Classifier such as a Neural Network Appropriate? .. 33
1.3.3 Probabilistic Classification and Bayes Formula 36
1.3.4 Bayes Decision Rule ... 41
1.3.5 Classification and Regression 43
1.4 Some Applications of Neural Networks to Various Areas of Engineering .. 50
1.4.1 Introduction ... 50
1.4.2 An Application in Pattern Recognition: The Automatic Reading of Zip Codes 51
1.4.3 An Application in Nondestructive Testing: Defect Detection by Eddy Currents 55
1.4.4 An Application in Forecasting: The Estimation of the Probability of Election to the French Parliament 56
1.4.5 An Application in Data Mining: Information Filtering ... 57
1.4.6 An Application in Bioengineering: Quantitative Structure-Relation Activity Prediction for Organic Molecules 62
1.4.7 An Application in Formulation: The Prediction of the Liquidus Temperatures of Industrial Glasses 64
1.4.8 An Application to the Modeling of an Industrial Process: The Modeling of Spot Welding 65
1.4.9 An Application in Robotics: The Modeling of the Hydraulic Actuator of a Robot Arm 68
1.4.10 An Application of Semiphysical Modeling to a Manufacturing Process 70
1.4.11 Two Applications in Environment Control: Ozone Pollution and Urban Hydrology 71
1.4.12 An Application in Mobile Robotics ... 75
1.5 Conclusion ... 76
1.6 Additional Material .. 77
1.6.1 Some Usual Neurons ... 77
1.6.2 The Ho and Kashyap Algorithm ... 79
References ... 80

2 Modeling with Neural Networks: Principles and Model Design Methodology

G. Dreyfus .. 85
2.1 What Is a Model? ... 85
2.1.1 From Black-Box Models to Knowledge-Based Models 85
2.1.2 Static vs. Dynamic Models ... 86
2.1.3 How to Deal With Uncertainty? The Statistical Context of Modeling and Machine Learning 86
2.2 Elementary Concepts and Vocabulary of Statistics 87
2.2.1 What is a Random Variable? ... 87
2.2.2 Expectation Value of a Random Variable 89
2.2.3 Unbiased Estimator of a Parameter of a Distribution 89
2.2.4 Variance of a Random Variable ... 90
2.2.5 Confidence Interval ... 92
2.2.6 Hypothesis Testing ... 92
2.3 Static Black-Box Modeling ... 92
2.3.1 Regression ... 93
2.3.2 Introduction to the Design Methodology 94
2.4 Input Selection for a Static Black-Box Model 95
2.4.1 Reduction of the Dimension of Representation Space 95
2.4.2 Choice of Relevant Variables .. 96
2.4.3 Conclusion on Variable Selection 103

2.5 Estimation of the Parameters (Training) of a Static Model 103
2.5.1 Training Models that are Linear with Respect to Their Parameters: The Least Squares Method for Linear Regression 106
2.5.2 Nonadaptive (Batch) Training of Static Models that Are Not Linear with Respect to Their Parameters 110
2.5.3 Adaptive (On-Line) Training of Models that Are Nonlinear with Respect to Their Parameters 121
2.5.4 Training with Regularization 121
2.5.5 Conclusion on the Training of Static Models 130

2.6 Model Selection .. 131
2.6.1 Preliminary Step: Discarding Overfitted Model by Computing the Rank of the Jacobian Matrix 133
2.6.2 A Global Approach to Model Selection: Cross-Validation and Leave-One-Out 134
2.6.3 Local Least Squares: Effect of Withdrawing an Example from the Training Set, and Virtual Leave-One-Out 137
2.6.4 Model Selection Methodology by Combination of the Local and Global Approaches 142

2.7 Dynamic Black-Box Modeling 149
2.7.1 State-Space Representation and Input-Output Representation .. 150
2.7.2 Assumptions on Noise and Their Consequences on the Structure, the Training and the Operation of the Model 151
2.7.3 Nonadaptive Training of Dynamic Models in Canonical Form 162
2.7.4 What to Do in Practice? A Real Example of Dynamic Black-Box Modeling 168
2.7.5 Casting Dynamic Models into a Canonical Form 171

2.8 Dynamic Semiphysical (Gray Box) Modeling 175
2.8.1 Principles of Semiphysical Modeling 175

2.9 Conclusion: What Tools? ... 186

2.10 Additional Material .. 187
2.10.1 Confidence Intervals: Design and Example 187
2.10.2 Hypothesis Testing: An Example 189
2.10.3 Pearson, Student and Fisher Distributions 189
2.10.4 Input Selection: Fisher’s Test; Computation of the Cumulative Distribution Function of the Rank of the Probe Feature 190
2.10.5 Optimization Methods: Levenberg-Marquardt and BFGS 193
2.10.6 Line Search Methods for the Training Rate 195
2.10.7 Kullback-Leibler Divergence Between two Gaussians 196
2.10.8 Computation of the Leverages 197

References .. 199
3 Modeling Methodology: Dimension Reduction and Resampling Methods

J.-M. Martinez .. 203
3.1 Introduction .. 203
3.2 Preprocessing ... 204
 3.2.1 Preprocessing of Inputs 204
 3.2.2 Preprocessing Outputs for Supervised Classification 205
 3.2.3 Preprocessing Outputs for Regression 206
3.3 Input Dimension Reduction 207
3.4 Principal Component Analysis 207
 3.4.1 Principle of PCA ... 207
3.5 Curvilinear Component Analysis 211
 3.5.1 Formal Presentation of Curvilinear Component Analysis .. 213
 3.5.2 Curvilinear Component Analysis Algorithm 215
 3.5.3 Implementation of Curvilinear Component Analysis 216
 3.5.4 Quality of the Projection 217
 3.5.5 Difficulties of Curvilinear Component Analysis 218
 3.5.6 Applied to Spectrometry 219
3.6 The Bootstrap and Neural Networks 220
 3.6.1 Principle of the Bootstrap 222
 3.6.2 Bootstrap Estimation of the Standard Deviation 223
 3.6.3 The Generalization Error Estimated by the Bootstrap ... 224
 3.6.4 The NeMo Method ... 225
 3.6.5 Testing the NeMo Method 227
 3.6.6 Conclusions ... 229
References ... 230

4 Neural Identification of Controlled Dynamical Systems and Recurrent Networks

M. Samuelides .. 231
4.1 Formal Definition and Examples of Discrete-Time Controlled
 Dynamical Systems .. 232
 4.1.1 Formal Definition of a Controlled Dynamical System by
 State Equation ... 232
 4.1.2 An Example of Discrete Dynamical System 233
 4.1.3 Example: The Linear Oscillator 234
 4.1.4 Example: The Inverted Pendulum 235
 4.1.5 Example of Nonlinear Oscillator: The Van Der Pol Oscillator236
 4.1.6 Markov Chain as a Model for Discrete-Time Dynamical
 Systems with Noise .. 236
 4.1.7 Linear Gaussian Model as an Example of a Continuous-
 State Dynamical System with Noise 239
 4.1.8 Auto-Regressive Models 240
 4.1.9 Limits of Modeling Uncertainties Using State Noise 242
4.2 Regression Modeling of Controlled Dynamical Systems 242
4.2.1 Linear Regression for Controlled Dynamical Systems 242
4.2.2 Nonlinear Identification Using Feedforward Neural Networks 246

4.3 On-Line Adaptive Identification and Recursive Prediction Error Method .. 250
4.3.1 Recursive Estimation of Empirical Mean ... 250
4.3.2 Recursive Estimation of Linear Regression ... 252
4.3.3 Recursive Identification of an AR Model ... 253
4.3.4 General Recursive Prediction Error Method (RPEM) 255
4.3.5 Application to the Linear Identification of a Controlled Dynamical System .. 256

4.4 Innovation Filtering in a State Model ... 258
4.4.1 Introduction of a Measurement Equation ... 258
4.4.2 Kalman Filtering ... 261
4.4.3 Extension of the Kalman Filter ... 265

4.5 Recurrent Neural Networks ... 270
4.5.1 Neural Simulator of an Open-Loop Controlled Dynamical System 270
4.5.2 Neural Simulator of a Closed Loop Controlled Dynamical System 270
4.5.3 Classical Recurrent Network Examples ... 272
4.5.4 Canonical Form for Recurrent Networks ... 275

4.6 Learning for Recurrent Networks ... 276
4.6.1 Teacher-Forced Learning .. 277
4.6.2 Unfolding of the Canonical Form and Backpropagation Through Time (BPTT) .. 277
4.6.3 Real-Time Learning Algorithms for Recurrent Network (RTRL) 281
4.6.4 Application of Recurrent Networks to Measured Controlled Dynamical System Identification 282

4.7 Appendix (Algorithms and Theoretical Developments) 283
4.7.1 Computation of the Kalman Gain and Covariance Propagation 283
4.7.2 The Delay Distribution Is Crucial for Recurrent Network Dynamics 285

References .. 287

5 Closed-Loop Control Learning
M. Samuelides .. 289
5.1 Generic Issues in Closed-Loop Control of Nonlinear Systems 290
5.1.1 Basic Model of Closed-Loop Control ... 290
5.1.2 Controllability ... 291
5.1.3 Stability of Controlled Dynamical Systems ... 292

5.2 Design of a Neural Control with an Inverse Model ... 294
5.2.1 Straightforward Inversion .. 294
5.2.2 Model Reference Adaptive Control ... 297
Neural Networks
Methodology and Applications
Dreyfus, G.
2005, XVIII, 498 p., Hardcover
ISBN: 978-3-540-22980-3