Contents

Introduction ... v

Keywords, chapter by chapter .. vii

1 The Gaussian space of BM .. 1

1.1 A realization of Brownian bridges 2

1.2 The filtration of Brownian bridges 3

1.3 An ergodic property .. 5

1.4 A relationship with space-time harmonic functions 7

1.5 Brownian motion and Hardy’s inequality in L^2 11

1.6 Fourier transform and Brownian motion 14

2 The laws of some quadratic functionals of BM 17

2.1 Lévy’s area formula and some variants 18

2.2 Some identities in law and an explanation of them via
 Fubini’s theorem .. 24

2.3 The laws of squares of Bessel processes 27
3 Squares of Bessel processes and Ray-Knight theorems for Brownian local times .. 31

3.1 The basic Ray-Knight theorems 32

3.2 The Lévy-Khintchine representation of Q_x^δ 34

3.3 An extension of the Ray-Knight theorems 37

3.4 The law of Brownian local times taken at an independent exponential time ... 39

3.5 Squares of Bessel processes and squares of Bessel bridges 41

3.6 Generalized meanders and squares of Bessel processes 47

3.7 Generalized meanders and Bessel bridges 51

4 An explanation and some extensions of the Ciesielski-Taylor identities .. 57

4.1 A pathwise explanation of (4.1) for $\delta = 1$ 58

4.2 A reduction of (4.1) to an identity in law between two Brownian quadratic functionals 59

4.3 Some extensions of the Ciesielski-Taylor identities 60

4.4 On a computation of Földes-Révész 64

5 On the winding number of planar BM 67

5.1 Preliminaries ... 67

5.2 Explicit computation of the winding number of planar Brownian motion ... 70
<table>
<thead>
<tr>
<th>Contents</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 On some exponential functionals of Brownian motion and the problem of Asian options</td>
<td>79</td>
</tr>
<tr>
<td>6.1 The integral moments of $A_t^{(v)}$</td>
<td>81</td>
</tr>
<tr>
<td>6.2 A study in a general Markovian set-up</td>
<td>84</td>
</tr>
<tr>
<td>6.3 The case of Lévy processes</td>
<td>87</td>
</tr>
<tr>
<td>6.4 Application to Brownian motion</td>
<td>88</td>
</tr>
<tr>
<td>6.5 A discussion of some identities</td>
<td>96</td>
</tr>
<tr>
<td>7 Some asymptotic laws for multidimensional BM</td>
<td>101</td>
</tr>
<tr>
<td>7.1 Asymptotic windings of planar BM around n points</td>
<td>102</td>
</tr>
<tr>
<td>7.2 Windings of BM in \mathbb{R}^3</td>
<td>105</td>
</tr>
<tr>
<td>7.3 Windings of independent planar BM’s around each other</td>
<td>107</td>
</tr>
<tr>
<td>7.4 A unified picture of windings</td>
<td>107</td>
</tr>
<tr>
<td>7.5 The asymptotic distribution of the self-linking number of BM in \mathbb{R}^3</td>
<td>109</td>
</tr>
<tr>
<td>8 Some extensions of Paul Lévy’s arc sine law for BM</td>
<td>115</td>
</tr>
<tr>
<td>8.1 Some notation</td>
<td>116</td>
</tr>
<tr>
<td>8.2 A list of results</td>
<td>117</td>
</tr>
<tr>
<td>8.3 A discussion of methods - Some proofs</td>
<td>120</td>
</tr>
<tr>
<td>8.4 An excursion theory approach to F. Petit’s results</td>
<td>125</td>
</tr>
<tr>
<td>8.5 A stochastic calculus approach to F. Petit’s results</td>
<td>133</td>
</tr>
</tbody>
</table>
9 Further results about reflecting Brownian motion perturbed by its local time at 0 137

9.1 A Ray-Knight theorem for the local times of X, up to τ^*_μ, and some consequences 137

9.2 Proof of the Ray-Knight theorem for the local times of X ... 140

9.3 Generalisation of a computation of F. Knight 144

9.4 Towards a pathwise decomposition of $(X_u; u \leq \tau^*_\mu)$ 149

10 On principal values of Brownian and Bessel local times ... 153

10.1 Yamada’s formulae .. 154

10.2 A construction of stable processes, involving principal values of Brownian local times 157

10.3 Distributions of principal values of Brownian local times, taken at an independent exponential time 158

10.4 Bertoin’s excursion theory for $\text{BES}(d)$, $0 < d < 1$ 159

11 Probabilistic representations of the Riemann zeta function and some generalisations related to Bessel processes .. 165

11.1 The Riemann zeta function and the 3-dimensional Bessel process .. 165

11.2 The right hand side of (11.4), and the agreement formulae between laws of Bessel processes and Bessel bridges 169

11.3 A discussion of the identity (11.8) 171

11.4 A strengthening of Knight’s identity, and its relation to the Riemann zeta function 175

11.5 Another probabilistic representation of the Riemann zeta function .. 178
11.6 Some generalizations related to Bessel processes 178

11.7 Some relations between \(X^\nu \) and \(\Sigma^\nu \equiv \sigma^\nu + \sigma'^\nu \) 182

11.8 \(\zeta^\nu(s) \) as a function of \(\nu \) ... 186

References ... 189

Further general references about BM
and Related Processes ... 195
Aspects of Brownian Motion
Mansuy, R.; Yor, M.
2008, XIV, 200 p., Softcover
ISBN: 978-3-540-22347-4