Table of Contents

1 Recent Developments in Electromagnetic Aquametry 1
 1.1 Introduction 1
 1.2 Principles and Definitions 3
 1.3 Instrumentation
 1.3.1 Metrological Enhancements 6
 1.3.2 New Sensors and Transducers 9
 1.4 Summary 11
 References 12

Dielectric Properties of Water and Moist Substances

2 Electromagnetic Wave Interactions with Water and Aqueous Solutions 15
 2.1 Introduction: Water, the Omnipresent Liquid 15
 2.2 The Architecture of the Water Molecule and
 the Unique Hydrogen Network 16
 2.2.1 The Isolated Water Molecule 16
 2.2.2 Liquid Water 17
 2.3 Hydrogen Network Fluctuations and Polarization Noise 19
 2.4 The Dielectric Properties of Water
 2.4.1 Complex Permittivity Spectrum 21
 2.4.2 Static Permittivity 23
 2.4.3 High Frequency Properties 25
 2.4.4 Principal Relaxation Time 26
 2.5 Aqueous Solutions
 2.5.1 Solute Contributions to Dielectric Spectra 28
 2.5.2 Solvent Permittivity Contribution Aspects 33
 2.6 Conclusions: Microwave Aquametry, an Inverse Problem 36
 References 37

3 Water in Polymers and Biopolymers Studied by Dielectric Techniques 39
 3.1 Introduction 39
 3.2 Hydration Properties 41
 3.3 Dielectric Techniques and Dielectric Properties 42
 3.4 Overall Behaviour 44
 3.5 Effects of Water on Secondary Relaxations and Relaxation
 in a Separate Water Phase 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 Effects of Water on Glass Transition and Primary α-Relaxation</td>
<td>55</td>
</tr>
<tr>
<td>3.7 Effects of Water on Electrical Conductivity</td>
<td>60</td>
</tr>
<tr>
<td>3.8 Conclusions</td>
<td>63</td>
</tr>
<tr>
<td>References</td>
<td>65</td>
</tr>
<tr>
<td>4 Thermal and Geometrical Effects on Bulk Permittivity</td>
<td></td>
</tr>
<tr>
<td>of Porous Mixtures Containing Bound Water</td>
<td>71</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>71</td>
</tr>
<tr>
<td>4.1.1 Dielectric Mixing Theory</td>
<td>71</td>
</tr>
<tr>
<td>4.1.2 Geometrical Effects</td>
<td>72</td>
</tr>
<tr>
<td>4.1.3 Bound Water</td>
<td>73</td>
</tr>
<tr>
<td>4.2 Theoretical Considerations</td>
<td>74</td>
</tr>
<tr>
<td>4.2.1 Water-Phase Permittivity</td>
<td>74</td>
</tr>
<tr>
<td>4.2.2 Water-Phase Temperature-Dependence</td>
<td>75</td>
</tr>
<tr>
<td>4.2.3 Particle Shape Effects</td>
<td>76</td>
</tr>
<tr>
<td>4.2.4 Three-Phase Dielectric Mixture Model</td>
<td>77</td>
</tr>
<tr>
<td>4.3 Measurements and Modeled Results</td>
<td>77</td>
</tr>
<tr>
<td>4.3.1 Permittivity Measurements in Porous Mixtures</td>
<td>78</td>
</tr>
<tr>
<td>4.3.2 Thermal Effects of Bound Water</td>
<td>78</td>
</tr>
<tr>
<td>4.3.3 Modeling the Total Water-Phase Permittivity</td>
<td>80</td>
</tr>
<tr>
<td>4.3.4 Modeling Geometrical Effects</td>
<td>82</td>
</tr>
<tr>
<td>4.3.5 Modeling Porosity and Density</td>
<td>84</td>
</tr>
<tr>
<td>4.3.6 Constituent-Phase Configuration Influence on Bulk Permittivity</td>
<td>87</td>
</tr>
<tr>
<td>4.4 Summary</td>
<td>89</td>
</tr>
<tr>
<td>References</td>
<td>90</td>
</tr>
<tr>
<td>5 Model Systems for Materials with High Dielectric Losses in Aquametry</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>93</td>
</tr>
<tr>
<td>5.2 Classical Two-Phase Mixing Formulas</td>
<td>94</td>
</tr>
<tr>
<td>5.3 Interfacial Polarization in Aquatic Mixtures</td>
<td>97</td>
</tr>
<tr>
<td>5.3.1 Interfacial Polarization and Dispersion</td>
<td>97</td>
</tr>
<tr>
<td>5.3.2 Effective Permittivity of a Layered Structure</td>
<td>97</td>
</tr>
<tr>
<td>5.3.3 Enhancement Effect</td>
<td>100</td>
</tr>
<tr>
<td>5.4 Analysis of the Enhancement Effect in High-Loss Mixtures</td>
<td>101</td>
</tr>
<tr>
<td>5.4.1 Peculiarities in High-Loss Mixing</td>
<td>101</td>
</tr>
<tr>
<td>5.4.2 Maxwell Garnett Formula for Lossy Mixtures</td>
<td>102</td>
</tr>
<tr>
<td>5.4.3 Discussion on the Enhancement Effect</td>
<td>105</td>
</tr>
<tr>
<td>5.5 Critical Parameters for Enhancement</td>
<td>106</td>
</tr>
<tr>
<td>5.5.1 Mixing Rules for Varying Inclusion Shapes</td>
<td>107</td>
</tr>
<tr>
<td>5.5.2 Example of the Critical Case</td>
<td>108</td>
</tr>
<tr>
<td>5.6 Discussion</td>
<td>110</td>
</tr>
<tr>
<td>References</td>
<td>111</td>
</tr>
</tbody>
</table>
Table of Content

7.4.8 Microwave Free-Space Technique at Two Frequencies 159
7.4.9 Methods of Density-Independent Measurement for Grain in the Microwave Range 160
7.4.9.1 Artificial Neural Network 161
7.4.9.2 Argand-Diagram According to Trabelsi, Kraszewski and Nelson 162
7.4.9.3 Comparison of Density-Independent Functions 163
7.5 Summary 164
References 165

8 Microwave and RF Resonator-Based Aquametry 169
8.1 Introduction 169
8.2 Traditional and New Types of Resonator Sensors 169
8.2.1 Basic Types of Resonator-Based Moisture/Humidity Sensors 169
8.2.2 New Types of Resonator Sensors and Applications 170
8.2.2.1 Waveguide-based Resonators 170
8.2.2.2 RF TEM Line-Based Resonator Sensors 175
8.2.2.3 Multiple-Probe Moisture Sensors 178
8.2.2.4 Split-Cavity Moisture Sensors 181
8.2.2.5 Waveguide Resonator Moisture Sensors 184
8.3 Dielectric Permittivity/Density-Independent Resonator-Based Aquametry 184
8.4 Conclusion 189
References 189

9 Density and Moisture Measurements Using Microwave Resonators 193
9.1 Introduction 193
9.2 Resonators 194
9.2.1 Cavity Resonators 195
9.2.1.1 E-Type Resonators 195
9.2.1.2 H-Type Resonators 197
9.2.2 Planar Resonant Structures 198
9.2.3 Overview Resonators 199
9.3 Density Independent Moisture Determination 200
9.4 Moisture Independent Density Determination 202
9.5 Measurement Devices 203
9.6 Temperature Compensation 206
9.7 Calibration 207
9.8 Industrial Applications 209
9.8.1 Moisture Measurement in Coffee Beans 210
9.8.2 On Site Moisture Measurement of Concrete 211
9.8.3 Density Measurement in Cigarettes 212
9.9 Conclusions 214
References 214
Table of Contents

10 Microwave Semisectorial and Other Resonator Sensors for Measuring Materials under Flow

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>217</td>
</tr>
<tr>
<td>10.2 Implementing a Resonator Sensor in a Pipe</td>
<td>218</td>
</tr>
<tr>
<td>10.3 Sectorial and Semisectorial Waveguides</td>
<td>219</td>
</tr>
<tr>
<td>10.3.1 TM Modes in Semisectorial Waveguides</td>
<td>220</td>
</tr>
<tr>
<td>10.3.2 TE Modes in Semisectorial Waveguide</td>
<td>222</td>
</tr>
<tr>
<td>10.3.3 Values for $p_{\nu m}$ and $p'_{\nu m}$ for Waveguide Modes in Semisectorial Waveguide</td>
<td>225</td>
</tr>
<tr>
<td>10.3.4 Discussion on Semisectorial and Sectorial Waveguide Modes</td>
<td>227</td>
</tr>
<tr>
<td>10.4 Cylindrical Fin Resonator (CFR) Sensor</td>
<td>229</td>
</tr>
<tr>
<td>10.5 End Grid Resonator Sensor</td>
<td>231</td>
</tr>
<tr>
<td>10.6 Wet Gas Meter Based on a V-Cone Resonator</td>
<td>234</td>
</tr>
<tr>
<td>10.7 Watercut Meter for Measuring Downhole in an Oil Well</td>
<td>238</td>
</tr>
<tr>
<td>References</td>
<td>241</td>
</tr>
</tbody>
</table>

11 Microstrip Transmission- and Reflection- Type Sensors Used in Microwave Aquametry

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>243</td>
</tr>
<tr>
<td>11.1.1 Microstrip Sensors Used in Microwave Aquametry</td>
<td>243</td>
</tr>
<tr>
<td>11.1.2 Microstrip Antennas as Sensors</td>
<td>245</td>
</tr>
<tr>
<td>11.2 Transmission-Type Microstrip Sensors</td>
<td>249</td>
</tr>
<tr>
<td>11.2.1 Free-Space Set-up Using Modulated Backscatter Technology</td>
<td>249</td>
</tr>
<tr>
<td>11.2.2 Bi-static Sensors for On-line Control</td>
<td>249</td>
</tr>
<tr>
<td>11.2.3 Emerging MSA and Sensor Technologies</td>
<td>250</td>
</tr>
<tr>
<td>11.3 New Results Using Reflection-Type Sensors</td>
<td>251</td>
</tr>
<tr>
<td>11.3.1 New Concept for Near-Field Sensing</td>
<td>251</td>
</tr>
<tr>
<td>11.3.2 A Calibration Method Using Scattering Parameters</td>
<td>253</td>
</tr>
<tr>
<td>11.3.3 Experimental Results</td>
<td>253</td>
</tr>
<tr>
<td>11.4 Conclusions</td>
<td>254</td>
</tr>
<tr>
<td>References</td>
<td>255</td>
</tr>
</tbody>
</table>

12 A Blind Deconvolution Approach for Free-Space Moisture Profile Retrieval at Microwave Frequencies

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>257</td>
</tr>
<tr>
<td>12.2 Free-Space Characterization Method</td>
<td>258</td>
</tr>
<tr>
<td>12.2.1 Reflection Coefficient Modeling for a Two-Layer Material</td>
<td>258</td>
</tr>
<tr>
<td>12.2.2 Construction of a Subsurface Moisture Profile</td>
<td>261</td>
</tr>
<tr>
<td>12.3 Blind Deconvolution Approach</td>
<td>262</td>
</tr>
<tr>
<td>12.3.1 Simulation of Reflection Coefficient Profiles</td>
<td>263</td>
</tr>
<tr>
<td>12.3.2 Profile Estimate Results</td>
<td>266</td>
</tr>
<tr>
<td>12.4 Reconstruction Method of a Moisture Profile</td>
<td>268</td>
</tr>
</tbody>
</table>
12.4.1 Moisture Profile Simulation 268
12.4.2 Moisture Profile Measurement 270
12.5 Conclusion 273
References 274

13 Sensors for Soil, Substrates, Concrete Based on the MCM100 Microchip 277

13.1 Introduction 277
13.2 A Microchip for Impedance Monitoring 279
13.2.1 Operation of the Chip 281
13.2.2 Calibration Procedure and Computation of Dielectric Properties 283
13.2.3 Temperature Corrections 285
13.3 FD Sensor for Water Content and Bulk EC in Soil 285
13.4 A Pore Water Conductivity Sensor for Growing Substrates 291
13.5 Monitoring the Strength of Young Concrete 296
13.6 A Dielectric Tensiometer to Measure Soil Matric Potential 300
13.7 An FD Sensor Auto-Calibration Method for Volumetric Water Content 308
References 312

Measurement Methods and Sensors in Time Domain

14 Advanced Measurement Methods in Time Domain Reflectometry for Soil Moisture Determination 317

14.1 Introduction 317
14.2 Dielectric Properties of Soils 318
14.3 Transmission Lines 321
14.3.1 Resistance R and Inductance L 322
14.3.2 Capacitance C and Conductance G 323
14.3.3 Transient Analysis 325
14.4 Reconstruction Algorithm 326
14.4.1 The Telegraph Equations 327
14.4.2 The Optimization Approach 328
14.4.3 Exact Expression for the Gradient of the Cost Function 329
14.4.4 Reconstruction of the Parameters 330
14.4.5 Reconstruction Examples 330
14.4.5.1 Lossless Case 331
14.4.5.2 Lossy Case 332
14.5 A Novel TDR Measurement Principle 333
14.5.1 The “Binary Sampler”, a Delta Modulator in Equivalent-Time Sampling 333
14.5.2 Slope Overload, Amplitude Range, and Quantization Noise 336
14.5.3 Equivalent-Time Sampling 337
14.5.4 “Observer”, a Novel TDR Instrument 338
14.5.5 Application and Comparison to Other Instruments 339
14.6 Experimental Results 341
 14.6.1 Measuring of Soil Water on a Full-Scale Levee Model 341
 14.6.2 Monitoring of Levees and Dams 344
14.7 Conclusion 346
References 346

15 Simulations and Experiments for Detection of Moisture Profiles with TDR in a Saline Environment 349
 15.1 Introduction 349
 15.2 Fundamentals of Time Domain Reflectometry 350
 15.3 Simulation of the Measurement Set-up 354
 15.4 Calibrations 359
 15.5 Moisture Profiles 360
 15.6 Bentonite in a Pressure Test Stand 362
 15.7 Summary 364
References 365

16 Combined TDR and Low-Frequency Permittivity Measurements for Continuous Snow Wetness and Snow Density Determination 367
 16.1 Introduction 367
 16.2 Dielectric Properties of Snow 369
 16.3 Measurement Principle 371
 16.4 Flat Band Cable Sensor 371
 16.5 Field Experiment Set-up 373
 16.6 Experimental Results 376
 16.7 Conclusion 381
References 382

17 Principles of Ultra-Wideband Sensor Electronics 383
 17.1 Introduction 383
 17.2 Basics of UWB System Theory 385
 17.3 Practical Constraints of UWB Measurements 389
 17.4 Measurement Errors
 17.4.1 Additive Random Noise 393
 17.4.2 Jitter 397
 17.4.3 Drift 398
 17.4.4 Systematic Errors 399
 17.5 Architecture of UWB Systems 400
 17.5.1 Down-Conversion 401
 17.5.2 Sliding Correlation 404
 17.5.3 Bandwidth Compression by Under-Sampling 404
 17.5.4 UWB Principles for Volume Application 407
20 Microwave Dielectric Properties of Hevea Rubber Latex, Oil Palm Fruit and Timber and Their Application for Quality Assessment 467

20.1 Introduction 467
20.2 Dielectric Properties 468
 20.2.1 Hevea Rubber Latex 468
 20.2.1.1 Dielectric Properties 468
 20.2.1.2 Mixture Model 472
 20.2.2 Oil Palm Fruit 473
 20.2.2.1 Dielectric Properties 473
 20.2.2.2 Mixture Model 475
 20.2.3 Timber 476
 20.2.3.1 Dielectric Properties 476
 20.2.3.2 Mixture Model 478
20.3 Application of Dielectric Properties 481
 20.3.1 Latexometer 481
 20.3.2 Microstrip and Conductor-Backed Coplanar Waveguide (CBCPW) Moisture Sensors for Oil Palm Fruit 483
 20.3.3 Wood Meter 485
20.4 Conclusion 488
References 489

Application of Nuclear Magnetic Resonance

21 Moisture Measuring with Nuclear Magnetic Resonance (NMR) 491

21.1 Introduction 491
21.2 Physical Background 492
 21.2.1 Basics of Hydrogen NMR 492
 21.2.2 NMR Relaxation and Signals 494
 21.2.3 SpatiallyResolved NMR and MRI 495
21.3 NMR Hardware 496
 21.3.1 Basic Components of NMR Instrumentation 496
 21.3.2 IBP Instrumentation 496
 21.3.3 IZFP Instrumentation One-Sided Access NMR (OSA-NMR) 498
21.4 Potential and Limits 499
 21.4.1 Potential of the Method 499
 21.4.2 Limits of the Method 500
 21.4.3 Accuracy and Spatial Resolution 501
 21.4.4 Maximum Specimen Size and Maximum Measuring Depth 501
21.5 Application 502
 21.5.1 Foods, Pharmaceuticals and Consumer Products 502
 21.5.2 Liquid Transport Coefficients in Building Materials 504
Table of Contents

21.5.2.1 Measuring Procedure 504
21.5.2.2 Results and Discussion 505
21.5.3 Application of OSA-NMR 508
 21.5.3.1 On-Site Determination of Moisture Profiles in Buildings 509
 21.5.3.2 On-Line Determination of Density and Moisture in Wood 510
 21.5.3.3 Monitoring of Concrete Hardening 511
21.6 Summary and Conclusions 513
References ... 514

Index ... 517
Electromagnetic Aquametry
Electromagnetic Wave Interaction with Water and Moist Substances
Kupfer, K. (Ed.)
2005, XXIV, 530 p., Hardcover
ISBN: 978-3-540-22222-4