Contents

1 Introduction to the Compensation Systems ................. 1
   1.1 Helium Cryogenics and its Applications ................. 3
   1.2 Compensation Systems Containing Bellows Expansion Joints . 11
      1.2.1 The Principle of Thermo-Mechanical Compensation . 11
      1.2.2 Reliability Aspects of Cryogenic Compensation Systems 19
   1.3 Bellows Expansion Joints ............................... 22
      1.3.1 State of Art: Corrugated Bellows and Toroidal Shells . 22
      1.3.2 Bellows Expansion Joints for Low Temperature
          Applications ............................................. 31
   1.4 Materials Applied at Low Temperatures .................. 38

2 Thermodynamics of Processes Occurring in Metals at
   Low Temperatures ............................................. 41
   2.1 Types of Metallic Lattice and its Imperfections ........... 41
   2.2 Heat Transport in Metals at Low Temperatures .......... 47
   2.3 Thermodynamic Instabilities at the Temperatures Close to
       Absolute Zero ............................................ 53
   2.4 Mechanism of Inelastic Deformations in Ductile Metals at
       Low Temperatures ....................................... 56

3 Properties of Austenitic Stainless Steels at Cryogenic
   Temperatures .................................................. 65
   3.1 Metallurgical Aspect (Chemical Composition and
       Structure) ................................................. 65
   3.2 Metallurgical Stability at Low Temperatures — Martensitic
       Transformation and Magnetic Permeability ............... 66
   3.3 Mechanical Properties: Tensile and Fatigue Tests at Low
       Temperatures .............................................. 68
   3.4 Classical versus Serrated Yielding ......................... 73
4 Plastic Yielding and Evolution of Ductile Damage under Cryogenic Conditions

4.1 Modelling of Plastic Yielding at Cryogenic Temperatures

4.1.1 Smooth Stress–Strain Curves

4.1.2 Serrated (Discontinuous) Yielding

4.2 Ductile Damage and the Kinetic Laws of Damage Evolution

4.2.1 Damage Variable and the Effective Stresses

4.2.2 The Variable (Y) Associated with Damage (D): Dual Variables

4.2.3 Potential of Dissipation and Kinetic Law of Damage Evolution

4.2.4 Identification of Parameters of the Kinetic Law of Damage Evolution at Room and at Cryogenic Temperatures

4.2.5 Orthotropic Damage in Ductile Materials at Cryogenic Temperatures

4.3 Accumulation of Damage due to Cyclic Loads. Effect of Large Mean Plastic Strain on the Number of Cycles to Failure

4.3.1 Accumulated Mean Strain of the Order of the Tensile Ductility

4.3.2 Solution Based on the Kinetic Law of Damage Evolution

4.3.3 Linear Evolution of the Mean Plastic Strain as a Function of Time

4.3.4 Comparison with the Experimental Results

4.3.5 Generalised Manson–Coffin Formula. Constant Mean Plastic Strain (Finite Ratchetting)

4.4 Numerical Modelling of Damage Accumulation

4.4.1 The Partially Coupled Approach to Plasticity–Damage

4.4.2 The Uncoupled Approach to Plasticity–Damage Analysis

5 Strain Induced Martensitic Transformation at Low Temperatures

5.1 Constitutive Models of Steels Exhibiting Strain Induced Martensitic Transformation

5.2 Transformation Kinetics at Cryogenic Temperatures

5.3 Constitutive Modelling of Plastic Flow in the Presence of Strain Induced Martensitic Transformation at Cryogenic Temperatures

5.4 Combined Model of Plastic Strain Induced Damage Evolution and Martensitic Transformation

5.5 Integration of the Constitutive Equations and Comparison with the Experimental Data

5.6 Combined Model of Plastic Strain Induced Orthotropic Damage and γ → α' Phase Transformation
6 Stability of Corrugated Axisymmetric Shells (Bellows) . . . 137
   6.1 Mechanism of Buckling of the Corrugated Bellows ........... 137
   6.2 Reissner–Meissner Equations Applied to Corrugated
   Axisymmetric Shells ......................................................... 138
       6.2.1 Geometry of Typical Corrugated Bellows ............... 140
       6.2.2 Rotationally Symmetric Deformation (Large
             Displacements, Small Strains) ................................. 142
       6.2.3 Overall Small Bending (Small Displacements, Small
             Strains) ................................................................. 146
       6.2.4 Numerical Solution .............................................. 150
   6.3 Concept of Equivalent Column in the Stability of Corrugated
   Axisymmetric Shells ............................................................ 151
       6.3.1 The Equivalent Column Concept .............................. 151
       6.3.2 Model of the Equivalent Column .............................. 152
       6.3.3 Strategy for Computation of the Critical Force .......... 153
       6.3.4 Simple Applications — type–S (Toroidal) Convolutions 155
   6.4 Effect of Relaxation of Boundary Conditions on Buckling of
   Systems Containing Corrugated Bellows ............................ 159
   6.5 Shear Deformation versus the Bifurcation Buckling Load ...... 161
       6.5.1 Eigenvalue Problem for the Column with a Finite
             Shear Stiffness ......................................................... 162
       6.5.2 Definition of Bending and Shear Stiffness of
             Corrugated Bellows .................................................. 165
       6.5.3 Effect of Shear on Buckling of Short Corrugated Bellows166
       6.5.4 Stability of Systems Equipped with Short Bellows:
             Relaxation of Support Conditions and Shear Effect........ 167
   6.6 Effect of Torsion on Bifurcation Buckling of Corrugated
   Bellows (Torque/Pressure Interaction Curves) ..................... 170

7 Material and Fatigue Induced Structural Instabilities of
Corrugated Bellows at Low Temperatures .......................... 175
   7.1 Introduction to the Phenomena Observed in Corrugated
   Bellows at Low Temperatures ............................................. 175
   7.2 Mechanisms of Plastic Adaptation in Bellows under
   Combined Loads ............................................................... 176
       7.2.1 The governing Equations for Elastic–Perfectly Plastic
             Bellows ................................................................. 177
       7.2.2 The Reduced Set of Equations and the Boundary
             Value Problem ......................................................... 180
       7.2.3 Limit Analysis ...................................................... 183
       7.2.4 Mechanisms of Adaptation and Inadaptation to Cyclic
             Loading ................................................................. 185
       7.2.5 Adaptation and Inadaptation Domains .................... 193
7.3 Plastic Strain Induced Damage Evolution and Martensitic Transformation in the Bellows Convolutions at Cryogenic Temperatures .................................................. 194
7.4 Mechanism of Fatigue Induced Structural Instability ................. 200
7.5 Evolution of Plastic Strain Fields and Damage in the Corrugated Bellows under Cyclic Loads at Cryogenic Temperatures .............................................. 205
  7.5.1 Simplified Constitutive Model of Stainless Steels at Cryogenic Temperatures ........................................ 205
  7.5.2 Numerical Simulation of Evolution of the Plastic Strain Intensity in Bellows Convolutions at Cryogenic Temperatures ........................................ 207
  7.5.3 Numerical Simulation of Damage Evolution in Bellows Convolutions at Cryogenic Temperatures .............. 210
7.6 Fatigue Induced Evolution of Bellows Axial Stiffness and its Effect on Buckling ........................................ 211

8 Reliability Oriented Optimum Design Of Cryogenic Compensation Systems .................................................. 217
  8.1 Reliability of Systems and Classification of Failures ............... 217
  8.2 Reliability Categories ...................................................... 218
  8.3 Global Approach in the Optimisation Procedure .................. 220
    8.3.1 Optimisation with respect to the Buckling Load (Minimum Buckling Failure Probability) ................. 221
    8.3.2 Optimisation with respect to the Global Cost of the Structure Under Failure Probability Constraints ........ 222
    8.3.3 Optimisation with respect to the Cost and the Global Buckling Load ............................................. 223
  8.4 Local Approach in the Optimisation (Interconnections) ......... 224
  8.5 Optimum Design of the Cryogenic Corrugated Bellows ........... 226
    8.5.1 Reliability Oriented Optimisation — Probabilistic Approach ............................................................. 226
    8.5.2 Classical Optimisation — Deterministic Approach ...... 227

9 Applications: Accelerators for High Energy Physics and Cryogenics Transfer Lines ........................................ 233
  9.1 Lepton and Hadron Colliders — Modern Tools of High Energy Physics .................................................. 233
    9.1.1 Superconducting Magnets and the Relevant Technology 236
    9.1.2 Technology of Ultra–High Vacuum for the Beam Lines 238
  9.2 Design of Compact Expansion Joints for Beam Vacuum Systems ................................................................. 241
    9.2.1 The Beam Vacuum Interconnects of the LHC ............... 241
    9.2.2 Very Compact Solution — Nested Bellows .................. 243
    9.2.3 Metallurgical Analysis of Nested Bellows ................. 245
Compensation Systems for Low Temperature Applications
Skoczen, B.T.
2004, XVII, 291 p., Hardcover
ISBN: 978-3-540-22202-6