Contents

Preface ... VII
Motivation ... VII
Aims, Readership and Book Structure XII
Final Word and Acknowledgments XIV
Description of Contents by Chapter XIX

Abbreviations and Notation XXXV

Part I. BASIC DEFINITIONS AND NO ARBITRAGE

1. Definitions and Notation 1
 1.1 The Bank Account and the Short Rate 2
 1.2 Zero-Coupon Bonds and Spot Interest Rates 4
 1.3 Fundamental Interest-Rate Curves 9
 1.4 Forward Rates ... 11
 1.5 Interest-Rate Swaps and Forward Swap Rates 13
 1.6 Interest-Rate Caps/Floors and Swaptions 16

2. No-Arbitrage Pricing and Numeraire Change 23
 2.1 No-Arbitrage in Continuous Time 24
 2.2 The Change-of-Numeraire Technique 26
 2.3 A Change of Numeraire Toolkit
 (Brigo & Mercurio 2001c) 28
 2.3.1 A helpful notation: “DC” 35
 2.4 The Choice of a Convenient Numeraire 37
 2.5 The Forward Measure 38
 2.6 The Fundamental Pricing Formulas 39
 2.6.1 The Pricing of Caps and Floors 40
 2.7 Pricing Claims with Deferred Payoffs 42
 2.8 Pricing Claims with Multiple Payoffs 42
 2.9 Foreign Markets and Numeraire Change 44
Part II. FROM SHORT RATE MODELS TO HJM

3. One-factor short-rate models

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction and Guided Tour</td>
<td>51</td>
</tr>
<tr>
<td>3.2 Classical Time-Homogeneous Short-Rate Models</td>
<td>57</td>
</tr>
<tr>
<td>3.2.1 The Vasicek Model</td>
<td>58</td>
</tr>
<tr>
<td>3.2.2 The Dothan Model</td>
<td>62</td>
</tr>
<tr>
<td>3.2.3 The Cox, Ingersoll and Ross (CIR) Model</td>
<td>64</td>
</tr>
<tr>
<td>3.2.4 Affine Term-Structure Models</td>
<td>68</td>
</tr>
<tr>
<td>3.2.5 The Exponential-Vasicek (EV) Model</td>
<td>70</td>
</tr>
<tr>
<td>3.3 The Hull-White Extended Vasicek Model</td>
<td>71</td>
</tr>
<tr>
<td>3.3.1 The Short-Rate Dynamics</td>
<td>72</td>
</tr>
<tr>
<td>3.3.2 Bond and Option Pricing</td>
<td>75</td>
</tr>
<tr>
<td>3.3.3 The Construction of a Trinomial Tree</td>
<td>78</td>
</tr>
<tr>
<td>3.4 Possible Extensions of the CIR Model</td>
<td>80</td>
</tr>
<tr>
<td>3.5 The Black-Karasinski Model</td>
<td>82</td>
</tr>
<tr>
<td>3.5.1 The Short-Rate Dynamics</td>
<td>83</td>
</tr>
<tr>
<td>3.5.2 The Construction of a Trinomial Tree</td>
<td>85</td>
</tr>
<tr>
<td>3.6 Volatility Structures in One-Factor Short-Rate Models</td>
<td>86</td>
</tr>
<tr>
<td>3.7 Humped-Volatility Short-Rate Models</td>
<td>92</td>
</tr>
<tr>
<td>3.8 A General Deterministic-Shift Extension</td>
<td>95</td>
</tr>
<tr>
<td>3.8.1 The Basic Assumptions</td>
<td>96</td>
</tr>
<tr>
<td>3.8.2 Fitting the Initial Term Structure of Interest Rates</td>
<td>97</td>
</tr>
<tr>
<td>3.8.3 Explicit Formulas for European Options</td>
<td>99</td>
</tr>
<tr>
<td>3.8.4 The Vasicek Case</td>
<td>100</td>
</tr>
<tr>
<td>3.9 The CIR++ Model</td>
<td>102</td>
</tr>
<tr>
<td>3.9.1 The Construction of a Trinomial Tree</td>
<td>105</td>
</tr>
<tr>
<td>3.9.2 Early Exercise Pricing via Dynamic Programming</td>
<td>106</td>
</tr>
<tr>
<td>3.9.3 The Positivity of Rates and Fitting Quality</td>
<td>106</td>
</tr>
<tr>
<td>3.9.4 Monte Carlo Simulation</td>
<td>109</td>
</tr>
<tr>
<td>3.9.5 Jump Diffusion CIR and CIR++ models (JCIR, JCIR++)</td>
<td>109</td>
</tr>
<tr>
<td>3.10 Deterministic-Shift Extension of Lognormal Models</td>
<td>110</td>
</tr>
<tr>
<td>3.11 Some Further Remarks on Derivatives Pricing</td>
<td>112</td>
</tr>
<tr>
<td>3.11.1 Pricing European Options on a Coupon-Bearing Bond</td>
<td>112</td>
</tr>
<tr>
<td>3.11.2 The Monte Carlo Simulation</td>
<td>114</td>
</tr>
<tr>
<td>3.11.3 Pricing Early-Exercise Derivatives with a Tree</td>
<td>116</td>
</tr>
<tr>
<td>3.11.4 A Fundamental Case of Early Exercise: Bermudan-Style Swaptions</td>
<td>121</td>
</tr>
<tr>
<td>3.12 Implied Cap Volatility Curves</td>
<td>124</td>
</tr>
<tr>
<td>3.12.1 The Black and Karasinski Model</td>
<td>125</td>
</tr>
<tr>
<td>3.12.2 The CIR++ Model</td>
<td>126</td>
</tr>
<tr>
<td>3.12.3 The Extended Exponential-Vasicek Model</td>
<td>128</td>
</tr>
<tr>
<td>3.13 Implied Swaption Volatility Surfaces</td>
<td>129</td>
</tr>
<tr>
<td>3.13.1 The Black and Karasinski Model</td>
<td>130</td>
</tr>
</tbody>
</table>
3.13.2 The Extended Exponential-Vasicek Model 131
3.14 An Example of Calibration to Real-Market Data 132

4. Two-Factor Short-Rate Models 137
 4.1 Introduction and Motivation 137
 4.2 The Two-Additive-Factor Gaussian Model G2++ 142
 4.2.1 The Short-Rate Dynamics 143
 4.2.2 The Pricing of a Zero-Coupon Bond 144
 4.2.3 Volatility and Correlation Structures in Two-Factor
 Models .. 148
 4.2.4 The Pricing of a European Option on a Zero-Coupon
 Bond ... 153
 4.2.5 The Analogy with the Hull-White Two-Factor Model 159
 4.2.6 The Construction of an Approximating Binomial Tree. 162
 4.2.7 Examples of Calibration to Real-Market Data 166
 4.3 The Two-Additive-Factor Extended CIR/LS Model CIR2++ 175
 4.3.1 The Basic Two-Factor CIR2 Model 176
 4.3.2 Relationship with the Longstaff and Schwartz Model
 (LS) ... 177
 4.3.3 Forward-Measure Dynamics and Option Pricing for
 CIR2 .. 178
 4.3.4 The CIR2++ Model and Option Pricing 179

5. The Heath-Jarrow-Morton (HJM) Framework 183
 5.1 The HJM Forward-Rate Dynamics 185
 5.2 Markovianity of the Short-Rate Process 186
 5.3 The Ritchken and Sankarasubramanian Framework 187
 5.4 The Mercurio and Moraleda Model 191

Part III. MARKET MODELS

6. The LIBOR and Swap Market Models (LFM and LSM) 195
 6.1 Introduction ... 195
 6.2 Market Models: a Guided Tour 196
 6.3 The Lognormal Forward-LIBOR Model (LFM) 207
 6.3.1 Some Specifications of the Instantaneous Volatility of
 Forward Rates .. 210
 6.3.2 Forward-Rate Dynamics under Different Numeraires 213
 6.4 Calibration of the LFM to Caps and Floors Prices 220
 6.4.1 Piecewise-Constant Instantaneous-Volatility Structures 223
 6.4.2 Parametric Volatility Structures 224
 6.4.3 Cap Quotes in the Market 225
 6.5 The Term Structure of Volatility 226
 6.5.1 Piecewise-Constant Instantaneous Volatility Structures 228
| 7.6.1 Cascade Calibration under Various Correlations and Ranks | 342 |
| 7.6.2 Cascade Calibration Diagnostics: Terminal Correlation and Evolution of Volatilities | 346 |
| 7.6.3 The interpolation for the swaption matrix and its impact on the CCA | 349 |
| 7.7 Empirically efficient Cascade Calibration | 351 |
| 7.7.1 CCA with Endogenous Interpolation and Based Only on Pure Market Data | 352 |
| 7.7.2 Financial Diagnostics of the RCCAEI test results | 359 |
| 7.7.3 Endogenous Cascade Interpolation for missing swaptions volatilities quotes | 364 |
| 7.7.4 A first partial check on the calibrated σ parameters stability | 364 |
| 7.8 Reliability: Monte Carlo tests | 366 |
| 7.9 Cascade Calibration and the cap market | 369 |
| 7.10 Cascade Calibration: Conclusions | 372 |
| 8. Monte Carlo Tests for LFM Analytical Approximations | 377 |
| 8.1 First Part. Tests Based on the Kullback Leibler Information (KLI) | 378 |
| 8.1.1 Distance between distributions: The Kullback Leibler information | 378 |
| 8.1.2 Distance of the LFM swap rate from the lognormal family of distributions | 381 |
| 8.1.3 Monte Carlo tests for measuring KLI | 384 |
| 8.1.4 Conclusions on the KLI-based approach | 391 |
| 8.2 Second Part: Classical Tests | 392 |
| 8.3 The “Testing Plan” for Volatilities | 392 |
| 8.4 Test Results for Volatilities | 396 |
| 8.4.1 Case (1): Constant Instantaneous Volatilities | 396 |
| 8.4.2 Case (2): Volatilities as Functions of Time to Maturity | 401 |
| 8.4.3 Case (3): Humped and Maturity-Adjusted Instantaneous Volatilities Depending only on Time to Maturity | 410 |
| 8.5 The “Testing Plan” for Terminal Correlations | 421 |
| 8.6 Test Results for Terminal Correlations | 427 |
| 8.6.1 Case (i): Humped and Maturity-Adjusted Instantaneous Volatilities Depending only on Time to Maturity, Typical Rank-Two Correlations | 427 |
| 8.6.2 Case (ii): Constant Instantaneous Volatilities, Typical Rank-Two Correlations | 430 |
| 8.6.3 Case (iii): Humped and Maturity-Adjusted Instantaneous Volatilities Depending only on Time to Maturity, Some Negative Rank-Two Correlations | 432 |
Part IV. THE VOLATILITY SMILE

9. Including the Smile in the LFM 447
 9.1 A Mini-tour on the Smile Problem 447
 9.2 Modeling the Smile 450

10. Local-Volatility Models 453
 10.1 The Shifted-Lognormal Model 454
 10.2 The Constant Elasticity of Variance Model 456
 10.3 A Class of Analytically-Tractable Models 459
 10.4 A Lognormal-Mixture (LM) Model 463
 10.5 Forward Rates Dynamics under Different Measures .. 467
 10.5.1 Decorrelation Between Underlying and Volatility 469
 10.6 Shifting the LM Dynamics 469
 10.7 A Lognormal-Mixture with Different Means (LMDM) .. 471
 10.8 The Case of Hyperbolic-Sine Processes 473
 10.9 Testing the Above Mixture-Models on Market Data .. 475
 10.10 A Second General Class 478
 10.11 A Particular Case: a Mixture of GBM’s 483
 10.12 An Extension of the GBM Mixture Model Allowing for Im-
 plied Volatility Skews 486
 10.13 A General Dynamics à la Dupire (1994) 489

11. Stochastic-Volatility Models 495
 11.1 The Andersen and Brotherton-Ratcliffe (2001) Model 497
 11.3 The Piterbarg (2003) Model 504
 11.5 The Joshi and Rebonato (2003) Model 513

12. Uncertain-Parameter Models 517
 12.1 The Shifted-Lognormal Model with Uncertain Parameters
 (SLMUP) ... 519
 12.1.1 Relationship with the Lognormal-Mixture LVM 520
 12.2 Calibration to Caplets 520
 12.3 Swaption Pricing 522
 12.4 Monte-Carlo Swaption Pricing 524
 12.5 Calibration to Swaptions 526
12.6 Calibration to Market Data ... 528
12.7 Testing the Approximation for Swaptions Prices 530
12.8 Further Model Implications 535
12.9 Joint Calibration to Caps and Swaptions 539

Part V. EXAMPLES OF MARKET PAYOFFS

13. Pricing Derivatives on a Single Interest-Rate Curve 547
13.1 In-Arrears Swaps .. 548
13.2 In-Arrears Caps ... 550
13.2.1 A First Analytical Formula (LFM) 550
13.2.2 A Second Analytical Formula (G2++) 551
13.3 Autocaps .. 551
13.4 Caps with Deferred Caplets 552
13.4.1 A First Analytical Formula (LFM) 553
13.4.2 A Second Analytical Formula (G2++) 553
13.5 Ratchet Caps and Floors ... 554
13.5.1 Analytical Approximation for Ratchet Caps with the
 LFM .. 555
13.6 Ratchets (One-Way Floaters) .. 556
13.7 Constant-Maturity Swaps (CMS) 557
13.7.1 CMS with the LFM ... 557
13.7.2 CMS with the G2++ Model 559
13.8 The Convexity Adjustment and Applications to CMS 559
13.8.1 Natural and Unnatural Time Lags 559
13.8.2 The Convexity-Adjustment Technique 561
13.8.3 Deducing a Simple Lognormal Dynamics from the Ad-
 justment .. 565
13.8.4 Application to CMS .. 565
13.8.5 Forward Rate Resetting Unnaturally and Average-
 Rate Swaps .. 566
13.9 Average Rate Caps ... 568
13.10 Captions and Floorings .. 570
13.11 Zero-Coupon Swaptions ... 571
13.12 Eurodollar Futures .. 575
13.12.1 The Shifted Two-Factor Vasicek G2++ Model 576
13.12.2 Eurodollar Futures with the LFM 577
13.13 LFM Pricing with “In-Between” Spot Rates 578
13.13.1 Accrual Swaps ... 579
13.13.2 Trigger Swaps ... 582
13.14 LFM Pricing with Early Exercise and Possible Path Dependence 584
13.15 LFM: Pricing Bermudan Swaptions 588
13.15.1 Least Squared Monte Carlo Approach 589
13.15.2 Carr and Yang’s Approach 591
13.15.3 Andersen’s Approach 592
13.15.4 Numerical Example 595
13.16 New Generation of Contracts 601
13.16.1 Target Redemption Notes 602
13.16.2 CMS Spread Options 603

14. Pricing Derivatives on Two Interest-Rate Curves 607
14.1 The Attractive Features of G2++ for Multi-Curve Payoffs . 608
14.1.1 The Model ... 608
14.1.2 Interaction Between Models of the Two Curves “1” and “2” ... 610
14.1.3 The Two-Models Dynamics under a Unique Conven- nient Forward Measure 611
14.2 Quanto Constant-Maturity Swaps 613
14.2.1 Quanto CMS: The Contract 613
14.2.2 Quanto CMS: The G2++ Model 615
14.2.3 Quanto CMS: Quanto Adjustment 621
14.3 Differential Swaps 623
14.3.1 The Contract 623
14.3.2 Differential Swaps with the G2++ Model 624
14.3.3 A Market-Like Formula 626
14.4 Market Formulas for Basic Quanto Derivatives 626
14.4.1 The Pricing of Quanto Caplets/Floorlets 627
14.4.2 The Pricing of Quanto Caps/Floors 628
14.4.3 The Pricing of Differential Swaps 629
14.4.4 The Pricing of Quanto Swaptions 630
14.5 Pricing of Options on two Currency LIBOR Rates 633
14.5.1 Spread Options 635
14.5.2 Options on the Product 637
14.5.3 Trigger Swaps 638
14.5.4 Dealing with Multiple Dates 639

Part VI. INFLATION

15. Pricing of Inflation-Indexed Derivatives 643
15.1 The Foreign-Currency Analogy 644
15.2 Definitions and Notation 645
15.3 The JY Model .. 646

16. Inflation-Indexed Swaps 649
16.1 Pricing of a ZCIIS 649
16.2 Pricing of a YYIIS 651
16.3 Pricing of a YYIIS with the JY Model 652
16.4 Pricing of a YYIIS with a First Market Model 654
16.5 Pricing of a YYIIS with a Second Market Model 657

17. Inflation-Indexed Caplets/Floorlets 661
 17.1 Pricing with the JY Model 661
 17.2 Pricing with the Second Market Model 663
 17.3 Inflation-Indexed Caps 665

18. Calibration to market data 669

19. Introducing Stochastic Volatility 673
 19.1 Modeling Forward CPI’s with Stochastic Volatility 674
 19.2 Pricing Formulae ... 676
 19.2.1 Exact Solution for the Uncorrelated Case 677
 19.2.2 Approximated Dynamics for Non-zero Correlations 680
 19.3 Example of Calibration 681

20. Pricing Hybrids with an Inflation Component 689
 20.1 A Simple Hybrid Payoff 689

Part VII. CREDIT

21. Introduction and Pricing under Counterparty Risk 695
 21.1 Introduction and Guided Tour 696
 21.1.1 Reduced form (Intensity) models 697
 21.1.2 CDS Options Market Models 699
 21.1.3 Firm Value (or Structural) Models 702
 21.1.4 Further Models 704
 21.1.5 The Multi-name picture: FtD, CDO and Copula Func-
 tions ... 705
 21.1.6 First to Default (FtD) Basket. 705
 21.1.7 Collateralized Debt Obligation (CDO) Tranches 707
 21.1.8 Where can we introduce dependence? 708
 21.1.9 Copula Functions 710
 21.1.10 Dynamic Loss models. 718
 21.1.11 What data are available in the market? 719
 21.2 Defaultable (corporate) zero coupon bonds 723
 21.2.1 Defaultable (corporate) coupon bonds 724
 21.3 Credit Default Swaps and Defaultable Floaters 724
 21.3.1 CDS payoffs: Different Formulations 725
 21.3.2 CDS pricing formulas 727
 21.3.3 Changing filtration: \mathcal{F}_t without default VS complete
 \mathcal{G}_t .. 728
 21.3.4 CDS forward rates: The first definition 730
21.3.5 Market quotes, model independent implied survival probabilities and implied hazard functions 731
21.3.6 A simpler formula for calibrating intensity to a single CDS ... 735
21.3.7 Different Definitions of CDS Forward Rates and Analogies with the LIBOR and SWAP rates 737
21.3.8 Defaultable Floater and CDS ... 739
21.4 CDS Options and Callable Defaultable Floaters 743
21.5 Constant Maturity CDS ... 744
21.5.1 Some interesting Financial features of CMCDS 745
21.6 Interest-Rate Payoffs with Counterparty Risk 747
21.6.1 General Valuation of Counterparty Risk 748
21.6.2 Counterparty Risk in single Interest Rate Swaps (IRS) ... 750

22. Intensity Models ... 757
22.1 Introduction and Chapter Description 757
22.2 Poisson processes ... 759
22.2.1 Time homogeneous Poisson processes 760
22.2.2 Time inhomogeneous Poisson Processes 761
22.2.3 Cox Processes ... 763
22.3 CDS Calibration and Implied Hazard Rates/ Intensities 764
22.4 Inducing dependence between Interest-rates and the default event ... 776
22.5 The Filtration Switching Formula: Pricing under partial information ... 777
22.6 Default Simulation in reduced form models 778
22.6.1 Standard error ... 781
22.6.2 Variance Reduction with Control Variate 783
22.7 Stochastic Intensity: The SSRD model 785
22.7.1 A two-factor shifted square-root diffusion model for intensity and interest rates (Brigo and Alfonsi (2003)) 786
22.7.2 Calibrating the joint stochastic model to CDS: Separability ... 789
22.7.3 Discretization schemes for simulating (λ, r) 797
22.7.4 Study of the convergence of the discretization schemes for simulating CIR processes (Alfonsi (2005)) 801
22.7.5 Gaussian dependence mapping: A tractable approximated SSRD ... 812
22.7.6 Numerical Tests: Gaussian Mapping and Correlation Impact ... 815
22.7.7 The impact of correlation on a few “test payoffs” 817
22.7.8 A pricing example: A Cancellable Structure 818
22.7.9 CDS Options and Jamshidian’s Decomposition 820
22.7.10 Bermudan CDS Options ... 830
22.8 Stochastic diffusion intensity is not enough: Adding jumps.
 The JCIR(++) Model .. 830
 22.8.1 The jump-diffusion CIR model (JCIR) 831
 22.8.2 Bond (or Survival Probability) Formula 832
 22.8.3 Exact calibration of CDS: The JCIR++ model 833
 22.8.4 Simulation .. 833
 22.8.5 Jamshidian’s Decomposition 834
 22.8.6 Attaining high levels of CDS implied volatility 836
 22.8.7 JCIR(++) models as a multi-name possibility 837
 22.9 Conclusions and further research 838

23. CDS Options Market Models 841
 23.1 CDS Options and Callable Defaultable Floaters 844
 23.1.1 Once-callable defaultable floaters 846
 23.2 A market formula for CDS options and callable defaultable
 floaters .. 847
 23.2.1 Market formulas for CDS Options 847
 23.2.2 Market Formula for callable DFRN 849
 23.2.3 Examples of Implied Volatilities from the Market 852
 23.3 Towards a Completely Specified Market Model 854
 23.3.1 First Choice. One-period and two-period rates 855
 23.3.2 Second Choice: Co-terminal and one-period CDS rates
 market model ... 860
 23.3.3 Third choice. Approximation: One-period CDS rates
 dynamics ... 861
 23.4 Hints at Smile Modeling 863
 23.5 Constant Maturity Credit Default Swaps (CMCDS) with the
 market model .. 864
 23.5.1 CDS and Constant Maturity CDS 864
 23.5.2 Proof of the main result 867
 23.5.3 A few numerical examples 869

Part VIII. APPENDICES

A. Other Interest-Rate Models 877
 A.1 Brennan and Schwartz’s Model 877
 A.2 Balduzzi, Das, Foresi and Sundaram’s Model 878
 A.3 Flesaker and Hughston’s Model 879
 A.4 Rogers’s Potential Approach 881
 A.5 Markov Functional Models 881
B. Pricing Equity Derivatives under Stochastic Rates
 B.1 The Short Rate and Asset-Price Dynamics
 B.1.1 The Dynamics under the Forward Measure
 B.2 The Pricing of a European Option on the Given Asset
 B.3 A More General Model
 B.3.1 The Construction of an Approximating Tree for r
 B.3.2 The Approximating Tree for S
 B.3.3 The Two-Dimensional Tree
C. A Crash Intro to Stochastic Differential Equations and Poisson Processes
 C.1 From Deterministic to Stochastic Differential Equations
 C.2 Ito's Formula
 C.3 Discretizing SDEs for Monte Carlo: Euler and Milstein Schemes
 C.4 Examples
 C.5 Two Important Theorems
 C.6 A Crash Intro to Poisson Processes
 C.6.1 Time inhomogeneous Poisson Processes
 C.6.2 Doubly Stochastic Poisson Processes (or Cox Processes)
 C.6.3 Compound Poisson processes
 C.6.4 Jump-diffusion Processes
D. A Useful Calculation
E. A Second Useful Calculation
F. Approximating Diffusions with Trees
G. Trivia and Frequently Asked Questions
H. Talking to the Traders
References
Index
Interest Rate Models - Theory and Practice
With Smile, Inflation and Credit
Brigo, D.; Mercurio, F.
2006, LVI, 982 p., Hardcover
ISBN: 978-3-540-22149-4