Contents

Preface .. VII
Motivation ... VII
Aims, Readership and Book Structure XII
Final Word and Acknowledgments XIV
Description of Contents by Chapter XIX

Abbreviations and Notation XXXV

Part I. BASIC DEFINITIONS AND NO ARBITRAGE

1. Definitions and Notation 1
 1.1 The Bank Account and the Short Rate 2
 1.2 Zero-Coupon Bonds and Spot Interest Rates 4
 1.3 Fundamental Interest-Rate Curves 9
 1.4 Forward Rates 11
 1.5 Interest-Rate Swaps and Forward Swap Rates 13
 1.6 Interest-Rate Caps/Floors and Swaptions 16

2. No-Arbitrage Pricing and Numeraire Change 23
 2.1 No-Arbitrage in Continuous Time 24
 2.2 The Change-of-Numeraire Technique 26
 2.3 A Change of Numeraire Toolkit
 (Brigo & Mercurio 2001c) 28
 2.3.1 A helpful notation: “DC” 35
 2.4 The Choice of a Convenient Numeraire 37
 2.5 The Forward Measure 38
 2.6 The Fundamental Pricing Formulas 39
 2.6.1 The Pricing of Caps and Floors 40
 2.7 Pricing Claims with Deferred Payoffs 42
 2.8 Pricing Claims with Multiple Payoffs 42
 2.9 Foreign Markets and Numeraire Change 44
Part II. FROM SHORT RATE MODELS TO HJM

3. **One-factor short-rate models** ... 51
 3.1 Introduction and Guided Tour .. 51
 3.2 Classical Time-Homogeneous Short-Rate Models 57
 3.2.1 The Vasicek Model ... 58
 3.2.2 The Dothan Model ... 62
 3.2.3 The Cox, Ingersoll and Ross (CIR) Model 64
 3.2.4 Affine Term-Structure Models 68
 3.2.5 The Exponential-Vasicek (EV) Model 70
 3.3 The Hull-White Extended Vasicek Model 71
 3.3.1 The Short-Rate Dynamics 72
 3.3.2 Bond and Option Pricing 75
 3.3.3 The Construction of a Trinomial Tree 78
 3.4 Possible Extensions of the CIR Model 80
 3.5 The Black-Karasinski Model 82
 3.5.1 The Short-Rate Dynamics 83
 3.5.2 The Construction of a Trinomial Tree 85
 3.6 Volatility Structures in One-Factor Short-Rate Models 86
 3.7 Humped-Volatility Short-Rate Models 92
 3.8 A General Deterministic-Shift Extension 95
 3.8.1 The Basic Assumptions 96
 3.8.2 Fitting the Initial Term Structure of Interest Rates ... 97
 3.8.3 Explicit Formulas for European Options 99
 3.8.4 The Vasicek Case ... 100
 3.9 The CIR++ Model .. 102
 3.9.1 The Construction of a Trinomial Tree 105
 3.9.2 Early Exercise Pricing via Dynamic Programming 106
 3.9.3 The Positivity of Rates and Fitting Quality 106
 3.9.4 Monte Carlo Simulation 109
 3.9.5 Jump Diffusion CIR and CIR++ models (JCIR, JCIR++) 109
 3.10 Deterministic-Shift Extension of Lognormal Models 110
 3.11 Some Further Remarks on Derivatives Pricing 112
 3.11.1 Pricing European Options on a Coupon-Bearing Bond 112
 3.11.2 The Monte Carlo Simulation 114
 3.11.3 Pricing Early-Exercise Derivatives with a Tree 116
 3.11.4 A Fundamental Case of Early Exercise: Bermudan-
 Style Swaptions. .. 121
 3.12 Implied Cap Volatility Curves 124
 3.12.1 The Black and Karasinski Model 125
 3.12.2 The CIR++ Model ... 126
 3.12.3 The Extended Exponential-Vasicek Model 128
 3.13 Implied Swaption Volatility Surfaces 129
 3.13.1 The Black and Karasinski Model 130
3.13.2 The Extended Exponential-Vasicek Model 131
3.14 An Example of Calibration to Real-Market Data 132

4. Two-Factor Short-Rate Models 137
4.1 Introduction and Motivation 137
4.2 The Two-Additive-Factor Gaussian Model G2++ 142
 4.2.1 The Short-Rate Dynamics 143
 4.2.2 The Pricing of a Zero-Coupon Bond 144
 4.2.3 Volatility and Correlation Structures in Two-Factor
 Models .. 148
 4.2.4 The Pricing of a European Option on a Zero-Coupon
 Bond .. 153
 4.2.5 The Analogy with the Hull-White Two-Factor Model . 159
 4.2.6 The Construction of an Approximating Binomial Tree. 162
 4.2.7 Examples of Calibration to Real-Market Data 166
4.3 The Two-Additive-Factor Extended CIR/LS Model CIR2++ 175
 4.3.1 The Basic Two-Factor CIR2 Model 176
 4.3.2 Relationship with the Longstaff and Schwartz Model
 (LS) .. 177
 4.3.3 Forward-Measure Dynamics and Option Pricing for
 CIR2 .. 178
 4.3.4 The CIR2++ Model and Option Pricing 179

5. The Heath-Jarrow-Morton (HJM) Framework 183
5.1 The HJM Forward-Rate Dynamics 185
5.2 Markovianity of the Short-Rate Process 186
5.3 The Ritchken and Sankarasubramanian Framework 187
5.4 The Mercurio and Moraleda Model 191

Part III. MARKET MODELS

6. The LIBOR and Swap Market Models (LFM and LSM) 195
 6.1 Introduction .. 195
 6.2 Market Models: a Guided Tour 196
 6.3 The Lognormal Forward-LIBOR Model (LFM) 207
 6.3.1 Some Specifications of the Instantaneous Volatility of
 Forward Rates 210
 6.3.2 Forward-Rate Dynamics under Different Numeraires .. 213
 6.4 Calibration of the LFM to Caps and Floors Prices 220
 6.4.1 Piecewise-Constant Instantaneous-Volatility Structures 223
 6.4.2 Parametric Volatility Structures 224
 6.4.3 Cap Quotes in the Market 225
 6.5 The Term Structure of Volatility 226
 6.5.1 Piecewise-Constant Instantaneous Volatility Structures 228
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.2</td>
<td>Parametric Volatility Structures</td>
<td>231</td>
</tr>
<tr>
<td>6.6</td>
<td>Instantaneous Correlation and Terminal Correlation</td>
<td>234</td>
</tr>
<tr>
<td>6.7</td>
<td>Swaptions and the Lognormal Forward-Swap Model (LSM)</td>
<td>237</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Swaptions Hedging</td>
<td>241</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Cash-Settled Swaptions</td>
<td>243</td>
</tr>
<tr>
<td>6.8</td>
<td>Incompatibility between the LFM and the LSM</td>
<td>244</td>
</tr>
<tr>
<td>6.9</td>
<td>The Structure of Instantaneous Correlations</td>
<td>246</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Some convenient full rank parameterizations</td>
<td>248</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Reduced-rank formulations: Rebonato’s angles and eigenvalues zeroing</td>
<td>250</td>
</tr>
<tr>
<td>6.9.3</td>
<td>Reducing the angles</td>
<td>259</td>
</tr>
<tr>
<td>6.10</td>
<td>Monte Carlo Pricing of Swaptions with the LFM</td>
<td>264</td>
</tr>
<tr>
<td>6.11</td>
<td>Monte Carlo Standard Error</td>
<td>266</td>
</tr>
<tr>
<td>6.12</td>
<td>Monte Carlo Variance Reduction: Control Variate Estimator</td>
<td>269</td>
</tr>
<tr>
<td>6.13</td>
<td>Rank-One Analytical Swaption Prices</td>
<td>271</td>
</tr>
<tr>
<td>6.14</td>
<td>Rank-r Analytical Swaption Prices</td>
<td>277</td>
</tr>
<tr>
<td>6.15</td>
<td>A Simpler LFM Formula for Swaptions Volatilities</td>
<td>281</td>
</tr>
<tr>
<td>6.16</td>
<td>A Formula for Terminal Correlations of Forward Rates</td>
<td>284</td>
</tr>
<tr>
<td>6.17</td>
<td>Calibration to Swaptions Prices</td>
<td>287</td>
</tr>
<tr>
<td>6.18</td>
<td>Instantaneous Correlations: Inputs (Historical Estimation) or Outputs (Fitting Parameters)?</td>
<td>290</td>
</tr>
<tr>
<td>6.19</td>
<td>The exogenous correlation matrix</td>
<td>291</td>
</tr>
<tr>
<td>6.19.1</td>
<td>Historical Estimation</td>
<td>292</td>
</tr>
<tr>
<td>6.19.2</td>
<td>Pivot matrices</td>
<td>295</td>
</tr>
<tr>
<td>6.20</td>
<td>Connecting Caplet and $S \times 1$-Swaption Volatilities</td>
<td>300</td>
</tr>
<tr>
<td>6.21</td>
<td>Forward and Spot Rates over Non-Standard Periods</td>
<td>307</td>
</tr>
<tr>
<td>6.21.1</td>
<td>Drift Interpolation</td>
<td>308</td>
</tr>
<tr>
<td>6.21.2</td>
<td>The Bridging Technique</td>
<td>310</td>
</tr>
<tr>
<td>7.1</td>
<td>Inputs for the First Cases</td>
<td>315</td>
</tr>
<tr>
<td>7.2</td>
<td>Joint Calibration with Piecewise-Constant Volatilities as in TABLE 5</td>
<td>315</td>
</tr>
<tr>
<td>7.3</td>
<td>Joint Calibration with Parameterized Volatilities as in Formulation 7</td>
<td>319</td>
</tr>
<tr>
<td>7.4</td>
<td>Exact Swaptions “Cascade” Calibration with Volatilities as in TABLE 1</td>
<td>322</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Some Numerical Results</td>
<td>330</td>
</tr>
<tr>
<td>7.5</td>
<td>A Pause for Thought</td>
<td>337</td>
</tr>
<tr>
<td>7.5.1</td>
<td>First summary</td>
<td>337</td>
</tr>
<tr>
<td>7.5.2</td>
<td>An automatic fast analytical calibration of LFM to swaptions. Motivations and plan</td>
<td>338</td>
</tr>
<tr>
<td>7.6</td>
<td>Further Numerical Studies on the Cascade Calibration Algorithm</td>
<td>340</td>
</tr>
</tbody>
</table>
7.6.1 Cascade Calibration under Various Correlations and Ranks .. 342
7.6.2 Cascade Calibration Diagnostics: Terminal Correlation and Evolution of Volatilities 346
7.6.3 The interpolation for the swaption matrix and its impact on the CCA 349
7.7 Empirically efficient Cascade Calibration ... 351
7.7.1 CCA with Endogenous Interpolation and Based Only on Pure Market Data 352
7.7.2 Financial Diagnostics of the RCCAEI test results .. 359
7.7.3 Endogenous Cascade Interpolation for missing swaptions volatilities quotes 364
7.7.4 A first partial check on the calibrated σ parameters stability 364
7.8 Reliability: Monte Carlo tests .. 366
7.9 Cascade Calibration and the cap market .. 369
7.10 Cascade Calibration: Conclusions .. 372

8. Monte Carlo Tests for LFM Analytical Approximations .. 377
8.1 First Part. Tests Based on the Kullback Leibler Information (KLI) 378
8.1.1 Distance between distributions: The Kullback Leibler information 378
8.1.2 Distance of the LFM swap rate from the lognormal family of distributions 381
8.1.3 Monte Carlo tests for measuring KLI ... 384
8.1.4 Conclusions on the KLI-based approach .. 391
8.2 Second Part: Classical Tests ... 392
8.3 The “Testing Plan” for Volatilities .. 392
8.4 Test Results for Volatilities .. 396
8.4.1 Case (1): Constant Instantaneous Volatilities .. 396
8.4.2 Case (2): Volatilities as Functions of Time to Maturity ... 401
8.4.3 Case (3): Humped and Maturity-Adjusted Instantaneous Volatilities Depending only on Time to Maturity ... 410
8.5 The “Testing Plan” for Terminal Correlations ... 421
8.6 Test Results for Terminal Correlations .. 427
8.6.1 Case (i): Humped and Maturity-Adjusted Instantaneous Volatilities Depending only on Time to Maturity, Typical Rank-Two Correlations .. 427
8.6.2 Case (ii): Constant Instantaneous Volatilities, Typical Rank-Two Correlations 430
8.6.3 Case (iii): Humped and Maturity-Adjusted Instantaneous Volatilities Depending only on Time to Maturity, Some Negative Rank-Two Correlations 432
8.6.4 Case (iv): Constant Instantaneous Volatilities, Some Negative Rank-Two Correlations 438
8.6.5 Case (v): Constant Instantaneous Volatilities, Perfect Correlations, Upwardly Shifted Φ’s 439
8.7 Test Results: Stylized Conclusions 442

Part IV. THE VOLATILITY SMILE

9. Including the Smile in the LFM 447
 9.1 A Mini-tour on the Smile Problem 447
 9.2 Modeling the Smile 450

10. Local-Volatility Models 453
 10.1 The Shifted-Lognormal Model 454
 10.2 The Constant Elasticity of Variance Model 456
 10.3 A Class of Analytically-tractable Models 459
 10.4 A Lognormal-Mixture (LM) Model 463
 10.5 Forward Rates Dynamics under Different Measures 467
 10.5.1 Decorrelation Between Underlying and Volatility 469
 10.6 Shifting the LM Dynamics 469
 10.7 A Lognormal-Mixture with Different Means (LMDM) 471
 10.8 The Case of Hyperbolic-Sine Processes 473
 10.9 Testing the Above Mixture-Models on Market Data 475
 10.10 A Second General Class 478
 10.11 A Particular Case: a Mixture of GBM’s 483
 10.12 An Extension of the GBM Mixture Model Allowing for Implied Volatility Skews 486
 10.13 A General Dynamics à la Dupire (1994) 489

11. Stochastic-Volatility Models 495
 11.1 The Andersen and Brotherton-Ratcliffe (2001) Model 497
 11.3 The Piterbarg (2003) Model 504
 11.5 The Joshi and Rebonato (2003) Model 513

12. Uncertain-Parameter Models 517
 12.1 The Shifted-Lognormal Model with Uncertain Parameters 519
 (SLMUP) ... 519
 12.1.1 Relationship with the Lognormal-Mixture LVM 520
 12.2 Calibration to Caplets 520
 12.3 Swaption Pricing 522
 12.4 Monte-Carlo Swaption Pricing 524
 12.5 Calibration to Swaptions 526
12.6 Calibration to Market Data .. 528
12.7 Testing the Approximation for Swaptions Prices 530
12.8 Further Model Implications 535
12.9 Joint Calibration to Caps and Swaptions 539

Part V. EXAMPLES OF MARKET PAYOFFS

13. Pricing Derivatives on a Single Interest-Rate Curve 547
 13.1 In-Arrears Swaps ... 548
 13.2 In-Arrears Caps ... 550
 13.2.1 A First Analytical Formula (LFM) 550
 13.2.2 A Second Analytical Formula (G2++) 551
 13.3 Autocaps .. 551
 13.4 Caps with Deferred Caplets 552
 13.4.1 A First Analytical Formula (LFM) 553
 13.4.2 A Second Analytical Formula (G2++) 553
 13.5 Ratchet Caps and Floors 554
 13.5.1 Analytical Approximation for Ratchet Caps with the
 LFM ... 555
 13.6 Ratchets (One-Way Floaters) 556
 13.7 Constant-Maturity Swaps (CMS) 557
 13.7.1 CMS with the LFM 557
 13.7.2 CMS with the G2++ Model 559
 13.8 The Convexity Adjustment and Applications to CMS 559
 13.8.1 Natural and Unnatural Time Lags 559
 13.8.2 The Convexity-Adjustment Technique 561
 13.8.3 Deducing a Simple Lognormal Dynamics from the Ad-
 justment .. 565
 13.8.4 Application to CMS 565
 13.8.5 Forward Rate Resetting Unnaturally and Average-
 Rate Swaps 566
 13.9 Average Rate Caps .. 568
 13.10 Captions and Floortions 570
 13.11 Zero-Coupon Swaptions 571
 13.12 Eurodollar Futures 575
 13.12.1 The Shifted Two-Factor Vasicek G2++ Model 576
 13.12.2 Eurodollar Futures with the LFM 577
 13.13 LFM Pricing with “In-Between” Spot Rates 578
 13.13.1 Accrual Swaps 579
 13.13.2 Trigger Swaps 582
 13.14 LFM Pricing with Early Exercise and Possible Path Dependence 584
 13.15 LFM: Pricing Bermudan Swaptions 588
 13.15.1 Least Squared Monte Carlo Approach 589
 13.15.2 Carr and Yang’s Approach 591
Part VI. INFLATION

15. Pricing of Inflation-Indexed Derivatives 643
 15.1 The Foreign-Currency Analogy 644
 15.2 Definitions and Notation 645
 15.3 The JY Model .. 646

16. Inflation-Indexed Swaps .. 649
 16.1 Pricing of a ZCIIS .. 649
 16.2 Pricing of a YYIIS .. 651
 16.3 Pricing of a YYIIS with the JY Model 652
 16.4 Pricing of a YYIIS with a First Market Model 654
<table>
<thead>
<tr>
<th>16.5 Pricing of a YYIIS with a Second Market Model</th>
<th>657</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Inflation-Indexed Caplets/Floorlets</td>
<td>661</td>
</tr>
<tr>
<td>17.1 Pricing with the JY Model</td>
<td>661</td>
</tr>
<tr>
<td>17.2 Pricing with the Second Market Model</td>
<td>663</td>
</tr>
<tr>
<td>17.3 Inflation-Indexed Caps</td>
<td>665</td>
</tr>
<tr>
<td>18. Calibration to market data</td>
<td>669</td>
</tr>
<tr>
<td>19. Introducing Stochastic Volatility</td>
<td>673</td>
</tr>
<tr>
<td>19.1 Modeling Forward CPI’s with Stochastic Volatility</td>
<td>674</td>
</tr>
<tr>
<td>19.2 Pricing Formulae</td>
<td>676</td>
</tr>
<tr>
<td>19.2.1 Exact Solution for the Uncorrelated Case</td>
<td>677</td>
</tr>
<tr>
<td>19.2.2 Approximated Dynamics for Non-zero Correlations</td>
<td>680</td>
</tr>
<tr>
<td>19.3 Example of Calibration</td>
<td>681</td>
</tr>
<tr>
<td>19. Pricing Hybrids with an Inflation Component</td>
<td>689</td>
</tr>
<tr>
<td>20.1 A Simple Hybrid Payoff</td>
<td>689</td>
</tr>
</tbody>
</table>

Part VII. CREDIT

<table>
<thead>
<tr>
<th>21. Introduction and Pricing under Counterparty Risk</th>
<th>695</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1 Introduction and Guided Tour</td>
<td>696</td>
</tr>
<tr>
<td>21.1.1 Reduced form (Intensity) models</td>
<td>697</td>
</tr>
<tr>
<td>21.1.2 CDS Options Market Models</td>
<td>699</td>
</tr>
<tr>
<td>21.1.3 Firm Value (or Structural) Models</td>
<td>702</td>
</tr>
<tr>
<td>21.1.4 Further Models</td>
<td>704</td>
</tr>
<tr>
<td>21.1.5 The Multi-name picture: FtD, CDO and Copula Functions</td>
<td>705</td>
</tr>
<tr>
<td>21.1.6 First to Default (FtD) Basket</td>
<td>705</td>
</tr>
<tr>
<td>21.1.7 Collateralized Debt Obligation (CDO) Tranches</td>
<td>707</td>
</tr>
<tr>
<td>21.1.8 Where can we introduce dependence?</td>
<td>708</td>
</tr>
<tr>
<td>21.1.9 Copula Functions</td>
<td>710</td>
</tr>
<tr>
<td>21.1.10 Dynamic Loss models</td>
<td>718</td>
</tr>
<tr>
<td>21.1.11 What data are available in the market?</td>
<td>719</td>
</tr>
<tr>
<td>21.2 Defaultable (corporate) zero coupon bonds</td>
<td>723</td>
</tr>
<tr>
<td>21.2.1 Defaultable (corporate) coupon bonds</td>
<td>724</td>
</tr>
<tr>
<td>21.3 Credit Default Swaps and Defaultable Floaters</td>
<td>724</td>
</tr>
<tr>
<td>21.3.1 CDS payoffs: Different Formulations</td>
<td>725</td>
</tr>
<tr>
<td>21.3.2 CDS pricing formulas</td>
<td>727</td>
</tr>
<tr>
<td>21.3.3 Changing filtration: \mathcal{F}_t without default VS complete \mathcal{G}_t</td>
<td>728</td>
</tr>
<tr>
<td>21.3.4 CDS forward rates: The first definition</td>
<td>730</td>
</tr>
</tbody>
</table>
21.3.5 Market quotes, model independent implied survival probabilities and implied hazard functions 731
21.3.6 A simpler formula for calibrating intensity to a single CDS .. 735
21.3.7 Different Definitions of CDS Forward Rates and Analogies with the LIBOR and SWAP rates 737
21.3.8 Defaultable Floater and CDS 739
21.4 CDS Options and Callable Defaultable Floaters 743
21.5 Constant Maturity CDS .. 744
21.5.1 Some interesting Financial features of CMCDS 745
21.6 Interest-Rate Payoffs with Counterparty Risk 747
21.6.1 General Valuation of Counterparty Risk 748
21.6.2 Counterparty Risk in single Interest Rate Swaps (IRS) 750

22. Intensity Models .. 757
22.1 Introduction and Chapter Description 757
22.2 Poisson processes ... 759
22.2.1 Time homogeneous Poisson processes 760
22.2.2 Time inhomogeneous Poisson Processes 761
22.2.3 Cox Processes .. 763
22.3 CDS Calibration and Implied Hazard Rates/ Intensities 764
22.4 Inducing dependence between Interest-rates and the default event ... 776
22.5 The Filtration Switching Formula: Pricing under partial information ... 777
22.6 Default Simulation in reduced form models 778
22.6.1 Standard error ... 781
22.6.2 Variance Reduction with Control Variate 783
22.7 Stochastic Intensity: The SSRD model 785
22.7.1 A two-factor shifted square-root diffusion model for intensity and interest rates (Brigo and Alfonsi (2003)). 786
22.7.2 Calibrating the joint stochastic model to CDS: Separability ... 789
22.7.3 Discretization schemes for simulating (λ, r) 797
22.7.4 Study of the convergence of the discretization schemes for simulating CIR processes (Alfonsi (2005)) 801
22.7.5 Gaussian dependence mapping: A tractable approximated SSRD ... 812
22.7.6 Numerical Tests: Gaussian Mapping and Correlation
Impact ... 815
22.7.7 The impact of correlation on a few “test payoffs” 817
22.7.8 A pricing example: A Cancellable Structure 818
22.7.9 CDS Options and Jamshidian’s Decomposition 820
22.7.10 Bermudan CDS Options 830
22.8 Stochastic diffusion intensity is not enough: Adding jumps.
 The JCIR(++) Model .. 830
22.8.1 The jump-diffusion CIR model (JCIR) 831
22.8.2 Bond (or Survival Probability) Formula. 832
22.8.3 Exact calibration of CDS: The JCIR++ model 833
22.8.4 Simulation .. 833
22.8.5 Jamshidian’s Decomposition. 834
22.8.6 Attaining high levels of CDS implied volatility 836
22.8.7 JCIR(++) models as a multi-name possibility 837
22.9 Conclusions and further research 838

23. CDS Options Market Models .. 841
 23.1 CDS Options and Callable Defaultable Floaters 844
 23.1.1 Once-callable defaultable floaters 846
23.2 A market formula for CDS options and callable defaultable
 floaters .. 847
 23.2.1 Market formulas for CDS Options 847
 23.2.2 Market Formula for callable DFRN 849
 23.2.3 Examples of Implied Volatilities from the Market 852
23.3 Towards a Completely Specified Market Model 854
 23.3.1 First Choice. One-period and two-period rates 855
 23.3.2 Second Choice: Co-terminal and one-period CDS rates
 market model 860
 23.3.3 Third choice. Approximation: One-period CDS rates
 dynamics .. 861
23.4 Hints at Smile Modeling ... 863
23.5 Constant Maturity Credit Default Swaps (CMCDS) with the
 market model .. 864
 23.5.1 CDS and Constant Maturity CDS 864
 23.5.2 Proof of the main result 867
 23.5.3 A few numerical examples 869

Part VIII. APPENDICES

A. Other Interest-Rate Models ... 877
 A.1 Brennan and Schwartz’s Model 877
 A.2 Balduzzi, Das, Foresi and Sundaram’s Model 878
 A.3 Flesaker and Hughston’s Model 879
 A.4 Rogers’s Potential Approach 881
 A.5 Markov Functional Models 881
B. Pricing Equity Derivatives under Stochastic Rates
 B.1 The Short Rate and Asset-Price Dynamics
 B.2 The Pricing of a European Option on the Given Asset
 B.3 A More General Model
 B.3.1 The Construction of an Approximating Tree for r
 B.3.2 The Approximating Tree for S
 B.3.3 The Two-Dimensional Tree

C. A Crash Intro to Stochastic Differential Equations and Poisson Processes
 C.1 From Deterministic to Stochastic Differential Equations
 C.2 Ito's Formula
 C.3 Discretizing SDEs for Monte Carlo: Euler and Milstein Schemes
 C.4 Examples
 C.5 Two Important Theorems
 C.6 A Crash Intro to Poisson Processes
 C.6.1 Time inhomogeneous Poisson Processes
 C.6.2 Doubly Stochastic Poisson Processes (or Cox Processes)
 C.6.3 Compound Poisson processes
 C.6.4 Jump-diffusion Processes

D. A Useful Calculation

E. A Second Useful Calculation

F. Approximating Diffusions with Trees

G. Trivia and Frequently Asked Questions

H. Talking to the Traders

References

Index
Interest Rate Models - Theory and Practice
With Smile, Inflation and Credit
Brigo, D.; Mercurio, F.
2006, LVI, 982 p., Hardcover
ISBN: 978-3-540-22149-4