Contents

Section I Introduction

1 **The Various Effects of Insects on Ecosystem Functioning**
 W.W. Weisser and E. Siemann

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>A Brief Overview of Insect Effects on Ecosystem Function</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Insect Effects on Ecosystem Function</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Herbivory</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1.2</td>
<td>Plant–Insect Mutualisms</td>
<td>14</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Other Direct and Indirect Effects of Insects on Ecosystem Function</td>
<td>14</td>
</tr>
<tr>
<td>1.4</td>
<td>The Aim and Structure of this Book</td>
<td>15</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

Section II Insects and the Belowground System

2 **Insect Herbivores, Nutrient Cycling and Plant Productivity**
 S.E. Hartley and T. H. Jones

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Introduction</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Decomposition</td>
<td>28</td>
</tr>
<tr>
<td>2.3.1</td>
<td>The Resources Available</td>
<td>28</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Effects of Insect Herbivory on Decomposition</td>
<td>31</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Herbivory and Litter Quality</td>
<td>31</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Herbivory, Root Exudation and Root Biomass</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Nutrient Cycling and Plant Productivity</td>
<td>33</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Effects on Carbon and Nitrogen Cycling</td>
<td>34</td>
</tr>
<tr>
<td>2.4.1.1</td>
<td>Methane and Carbon Dioxide</td>
<td>34</td>
</tr>
<tr>
<td>2.4.1.2</td>
<td>Nitrogen and Phosphorus</td>
<td>35</td>
</tr>
<tr>
<td>2.4.1.3</td>
<td>Inputs from Aboveground Herbivores</td>
<td>36</td>
</tr>
<tr>
<td>2.4.1.4</td>
<td>The Importance of Belowground Biota: Evidence from Controlled Environment Studies</td>
<td>39</td>
</tr>
<tr>
<td>2.4.1.5</td>
<td>Insect Herbivory and Spatial Variation in Nutrient Availability</td>
<td>40</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Herbivory and Plant Biomass</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Conclusions</td>
<td>45</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>46</td>
</tr>
</tbody>
</table>

3 Indirect Effects of Invertebrate Herbivory on the Decomposer Subsystem 53
D.A. Wardle and R.D. Bardgett

3.1	Summary	53
3.2	Introduction	54
3.3	Mechanistic Bases of Invertebrate Herbivore Effects	54
3.3.1	Immediate Effects on Resource Quantity	56
3.3.2	Longer-Term Effects on Resource Quantity	56
3.3.3	Effects of Changed Litter Quality	57
3.3.4	Return of Invertebrate Waste Products	58
3.3.5	Effects of Changes in Vegetation Composition	59
3.3.6	Feedbacks and Aboveground Consequences	61
3.4	Significance of Invertebrate Herbivore Outbreaks	61
3.5	Multiple Species Herbivore Communities	62
3.6	Comparisons of Ecosystems	64
3.7	Conclusions	65
References		66

4 Biotic Interactions in the Rhizosphere: Effects on Plant Growth and Herbivore Development 71
M. Bonkowski and S. Scheu

| 4.1 | Summary | 71 |
| 4.2 | The Rhizosphere – Interface of Intense Microbial and Faunal Interactions | 72 |
6.3.1 Hypotheses Predicting the Response of Herbivores to Higher Plant Diversity 117
6.3.2 Responses of Specialist and Generalist Herbivores in Plant Diversity Experiments 119
6.3.3 Concomitant Responses of Natural Enemies of Herbivores .. 123
6.3.4 Insect Herbivores as Drivers of Ecosystem Processes ... 124
6.4 Effects of Plant Diversity on Pathogens ... 125
6.5 Belowground Food Web ... 126
6.5.1 Plant Biomass and Microbial Response ... 126
6.5.2 Soil Animals that Feed on Microbes ... 128
6.6 Conclusions .. 129
References ... 130

7 The Potential of Phytophagous Insects in Restoring Invaded Ecosystems: Examples from Biological Weed Control 135
H. Zwölfer and H. Zimmermann

7.1 Summary ... 135
7.2 Introduction ... 136
7.3 Success Rates and Successes in Biological Weed Control ... 137
7.4 Weed Characteristics and Positive Traits of Insects in Biological Control .. 138
7.4.1 Weed Species .. 139
7.4.2 Insect Species ... 139
7.5 Three Examples of Successful Weed Control .. 140
7.5.1 *Rhinocyllus conicus* on *Carduus nutans* .. 140
7.5.2 Interactions Between Three Weevil Species in the Biocontrol of the Invader *Sesbania punicea* in South Africa ... 143
7.5.2.1 The Seed-Destroying Agents: *Trichapion lativentre* and *Rhysomatus marginatus* 144
7.5.2.2 The Stem-Borer: *Neodiplogrammus quadrivittatus* ... 145
7.5.3 Aquatic Weeds .. 146
7.6 Discussion and Conclusions ... 147
References ... 150

8 Plant-Insect–Pathogen Interactions on Local and Regional Scales .. 155
A. Kruess, S. Eber, S. Kluth and T. Tscharntke

8.1 Summary ... 155
8.2 Introduction ... 156
8.3 Biological Weed Control, Interactions and Ecosystem Processes ... 157
8.3.1 Classical Biological Control .. 157
8.3.2 Plant–Pathogen–Herbivore Interactions .. 158
8.4 Creeping Thistle, Insects, Pathogens and Processes ... 160
8.4.1 The Creeping Thistle (Cirsium arvense) ... 160
8.4.2 Interactions Between Pathogens and Insect Vectors on a Local Scale .. 161
8.4.3 Regional Dynamics of Cirsium arvense and an Associated Herbivore 163
8.4.4 The Influence of Landscape Context at Different Spatial Scales .. 165
8.5 Conclusions and Future Outlook ... 168
References .. 169

9 Food Web Interactions and Ecosystem Processes .. 175
A. JANSSEN and M.W. SABELIS

9.1 Summary ... 175
9.2 Introduction ... 175
9.3 Interactions Among Entire Trophic Levels .. 178
9.4 Effects of Diversity Within Trophic Levels .. 179
9.4.1 Apparent Competition .. 180
9.4.2 Omnivory ... 180
9.4.3 Intraguild Predation ... 181
9.4.4 Plant-Mediated Indirect Interactions Between Herbivores ... 181
9.4.5 Indirect Plant Defences .. 182
9.4.6 Interactions Among Plants ... 183
9.4.7 Behavioural Effects ... 184
9.5 Conclusions and Perspectives ... 184
References ... 186

10 A General Rule for Predicting When Insects Will Have Strong Top-Down Effects on Plant Communities: On the Relationship Between Insect Outbreaks and Host Concentration ... 193
W.P. CARSON, J. PATRICK CRONIN and Z.T. LONG

10.1 Summary ... 193
10.2 Introduction ... 193
10.3 The Significance of Insect Outbreaks ... 194
Insect Outbreaks Are Common in Numerous Community-Types Worldwide

Insect Outbreaks Are More Common and More Devastating per Host in Large, Dense and Continuous Host Stands

Native Outbreaking Insects Function as Keystone Species by Reducing the Abundance of the Dominant Species and Increasing Diversity

Insect Outbreaks Are Common Relative to Host Life Span Yet May Often Go Unnoticed

Chrysolomelid Beetles and Lepidoptera Seem to be Responsible for the Majority of Outbreaks

The Host Concentration Model May Predict Insect Impact on Plant Communities at Multiple Spatial Scales Better Than Resource Supply Theory

Resource Supply Theory

The Host Concentration Model (HCM)

Distinguishing Between the Two Models

Relationship to Other Related Processes Proposed to Promote Diversity

Does Pathogen Impact Increase with Host Concentration?

References

The Ecology Driving Nutrient Fluxes in Forests

B. Stadler, E. Mühlengberg and B. Michalzik

Summary

Introduction

Life Histories of Canopy Insects

Aphids

Scale Insects

Lepidopterous Larvae

Population Ecological Background of Nutrient Fluxes

Sites and Experimental Setup

Results

Trophic Effects and Organic Pathways

Herbivore-Mediated Changes in Quality and Quantity of Nutrient Fluxes

Synthesis and Conclusions

Understanding the Temporal Dynamics of Energy and Nutrient Fluxes

Understanding the Spatial Variability in Fluxes
14 From Mesocosms to the Field: The Role and Value of Cage Experiments in Understanding Top-Down Effects in Ecosystems

O.J. Schmitz

14.1 Summary

14.2 Introduction

14.3 Research Approach

14.4 In-Ecosystem Investigation Using Enclosure Experiments

14.4.1 Natural History: Knowing the Players in the System

14.4.2 Enclosure Cages: Design and Biophysical Properties

14.4.3 Considerations for the Design of Cage Experiments

14.4.3.1 Artificial Complements of Populations or Communities in Enclosure Cages Are Not Realistic

14.4.3.2 Experimental Outcome Could Be an Artifact of the Venue

14.4.3.3 Enclosures Unrealistically Constrain Movement of Species

14.4.3.4 Time Scale of Enclosure Experiments Exclude or Distort Important Features of Communities and Ecosystems

14.4.4 Mechanistic Insights from Enclosure Cage Experiments

14.4.5 Of-Ecosystem Studies: Testing the Reliability of Mechanistic Insights from Cage Experiments

14.4.5.1 Direct and Indirect Effects of Top Predators

14.4.5.2 Top Predator Effects on Plant Diversity and Productivity

References

15 Reducing Herbivory Using Insecticides

E. Siemann, W.P. Carson, W.E. Rogers and W.W. Weisser

15.1 Summary

15.2 Basic Concepts

15.3 Using Insecticides to Infer the Role of Herbivores

15.4 Ghost of Herbivory Past

15.5 Artifacts of Method May Masquerade as Release from Herbivory

15.5.1 What Types of Artifacts Are a Concern?

15.5.2 Overview of Published Studies

15.5.3 Quantification of Herbivore Damage

15.5.4 Phytotoxic Effects

15.5.5 Insecticides May Be Toxic to Several Groups of Insects

15.5.6 Effects of Insecticides on Non-Arthropods

15.5.7 Effects of Insecticides on Soil Organisms
16 The Role of Herbivores in Exotic Plant Invasions: Insights Using a Combination of Methods to Enhance or Reduce Herbivory 329
W.E. Rogers and E. Siemann

16.1 Summary .. 329
16.2 Introduction .. 329
16.3 The Role of Herbivores in Exotic Plant Invasions 330
16.4 Focal Plant Species 331
16.5 Experimental Methods for Assessing Herbivory Effects ... 331
16.5.1 Common Garden/Reciprocal Transplant Studies 332
16.5.2 Reducing Herbivory on Target Plants Using Insecticide Sprays 336
16.5.3 Reducing Herbivory on Community Assemblages Using Insecticide Sprays 337
16.5.4 Factorial Manipulations of Herbivory, Resources and Competition 338
16.5.5 Simulating Herbivory Via Mechanical Leaf Damage 339
16.5.6 Simulating Herbivory Via Mechanical Root Damage 341
16.5.7 Simulating Herbivory Using Herbicide Sprays 342
16.5.8 Assessing Herbivore Damage Using Exclosures and Enclosures 344
16.6 Implications and Potential Significance 347
References ... 349

17 Herbivore-Specific Transcriptional Responses and Their Research Potential for Ecosystem Studies 357
C. Voelckel and I.T. Baldwin

17.1 Summary .. 357
17.2 The Subtle Effects of Insects on Ecosystem Function 357
17.3 Transcriptional Regulation of Plant Responses 358
17.4 Insect-Induced Transcriptional Changes 362
Insects and Ecosystem Function
Weisser, W.W.; Siemann, E. (Eds.)
2008, XXI, 415 p., Hardcover
ISBN: 978-3-540-21672-8