Contents

Section I Introduction

1 The Various Effects of Insects on Ecosystem Functioning . 3
 W.W. WEISSER and E. SIEMANN

 1.1 Summary .. 3
 1.2 Introduction .. 3
 1.3 A Brief Overview of Insect Effects on Ecosystem Function . 8
 1.3.1 Insect Effects on Ecosystem Function
 Via Interactions with Plants 8
 1.3.1.1 Herbivory .. 8
 1.3.1.2 Plant–Insect Mutualisms 14
 1.3.2 Other Direct and Indirect Effects of Insects
 on Ecosystem Function 14
 1.4 The Aim and Structure of this Book 15
 References .. 19

Section II Insects and the Belowground System

2 Insect Herbivores, Nutrient Cycling and Plant Productivity 27
 S.E. HARTLEY and T. H. JONES

 2.1 Summary .. 27
 2.2 Introduction .. 28
 2.3 Decomposition .. 28
 2.3.1 The Resources Available 28
 2.3.2 Effects of Insect Herbivory on Decomposition 31
2.3.2.1 Herbivory and Litter Quality 31
2.3.2.2 Herbivory, Root Exudation and Root Biomass 32
2.4 Nutrient Cycling and Plant Productivity 33
2.4.1 Effects on Carbon and Nitrogen Cycling 34
2.4.1.1 Methane and Carbon Dioxide 34
2.4.1.2 Nitrogen and Phosphorus 35
2.4.1.3 Inputs from Aboveground Herbivores 36
2.4.1.4 The Importance of Belowground Biota: Evidence from Controlled Environment Studies 39
2.4.1.5 Insect Herbivory and Spatial Variation in Nutrient Availability .. 40
2.4.2 Herbivory and Plant Biomass 41
2.5 Conclusions ... 45
References .. 46

3 Indirect Effects of Invertebrate Herbivory on the Decomposer Subsystem 53
D.A. Wardle and R.D. Bardgett

3.1 Summary .. 53
3.2 Introduction .. 54
3.3 Mechanistic Bases of Invertebrate Herbivore Effects 54
3.3.1 Immediate Effects on Resource Quantity 56
3.3.2 Longer-Term Effects on Resource Quantity 56
3.3.3 Effects of Changed Litter Quality 57
3.3.4 Return of Invertebrate Waste Products 58
3.3.5 Effects of Changes in Vegetation Composition 59
3.3.6 Feedbacks and Aboveground Consequences 61
3.4 Significance of Invertebrate Herbivore Outbreaks 61
3.5 Multiple Species Herbivore Communities 62
3.6 Comparisons of Ecosystems 64
3.7 Conclusions .. 65
References .. 66

4 Biotic Interactions in the Rhizosphere: Effects on Plant Growth and Herbivore Development 71
M. Bonkowski and S. Scheu

4.1 Summary .. 71
4.2 The Rhizosphere – Interface of Intense Microbial and Faunal Interactions 72
Section III Plant–Insect Interactions and Ecosystem Processes

6 Bottom-Up Effects and Feedbacks in Simple and Diverse Experimental Grassland Communities 115

6.1 Summary 115
6.2 Introduction 116
6.3 Effects of Plant Diversity on Herbivorous Insects Feeding Above Ground 117
6.3.1 Hypotheses Predicting the Response of Herbivores to Higher Plant Diversity 117
6.3.2 Responses of Specialist and Generalist Herbivores in Plant Diversity Experiments 119
6.3.3 Concomitant Responses of Natural Enemies of Herbivores .. 123
6.3.4 Insect Herbivores as Drivers of Ecosystem Processes ... 124
6.4 Effects of Plant Diversity on Pathogens ... 125
6.5 Belowground Food Web ... 126
6.5.1 Plant Biomass and Microbial Response ... 126
6.5.2 Soil Animals that Feed on Microbes .. 128
6.6 Conclusions .. 129
References ... 130

7 The Potential of Phytophagous Insects in Restoring Invaded Ecosystems: Examples from Biological Weed Control 135
H. Zwölfer and H. Zimmermann

7.1 Summary ... 135
7.2 Introduction .. 136
7.3 Success Rates and Successes in Biological Weed Control ... 137
7.4 Weed Characteristics and Positive Traits of Insects in Biological Control 138
7.4.1 Weed Species .. 139
7.4.2 Insect Species .. 139
7.5 Three Examples of Successful Weed Control .. 140
7.5.1 Rhinocyllus conicus on Carduus nutans ... 140
7.5.2 Interactions Between Three Weevil Species in the Biocontrol of the Invader Sesbania punicea in South Africa 143
7.5.2.1 The Seed-Destroying Agents: Trichapion lativentre and Rhyssomatus marginatus 144
7.5.2.2 The Stem-Borer: Neodiplogrammus quadrivittatus ... 145
7.5.3 Aquatic Weeds .. 146
7.6 Discussion and Conclusions ... 147
References ... 150

8 Plant-Insect–Pathogen Interactions on Local and Regional Scales 155
A. Kruess, S. Eber, S. Kluth and T. Tscharntke

8.1 Summary ... 155
8.2 Introduction .. 156
10.3.1 Insect Outbreaks Are Common in Numerous Community-Types Worldwide 195
10.3.2 Insect Outbreaks Are More Common and More Devastating per Host in Large, Dense and Continuous Host Stands 199
10.3.3 Native Outbreaking Insects Function as Keystone Species by Reducing the Abundance of the Dominant Species and Increasing Diversity 200
10.3.4 Insect Outbreaks Are Common Relative to Host Life Span Yet May Often Go Unnoticed 201
10.3.5 Chrysomelid Beetles and Lepidoptera Seem to be Responsible for the Majority of Outbreaks 201
10.4 The Host Concentration Model May Predict Insect Impact on Plant Communities at Multiple Spatial Scales Better Than Resource Supply Theory 202
10.4.1 Resource Supply Theory 202
10.4.2 The Host Concentration Model (HCM) 203
10.4.3 Distinguishing Between the Two Models 204
10.5 Relationship to Other Related Processes Proposed to Promote Diversity 204
10.5.1 Does Pathogen Impact Increase with Host Concentration? 205
References 205

11 The Ecology Driving Nutrient Fluxes in Forests 213
B. Stadler, E. Mühlenberg and B. Michalzik

11.1 Summary 213
11.2 Introduction 214
11.3 Life Histories of Canopy Insects 215
11.3.1 Aphids 215
11.3.2 Scale Insects 215
11.3.3 Lepidopterous Larvae 216
11.4 Population Ecological Background of Nutrient Fluxes 217
11.4.1 Sites and Experimental Setup 219
11.4.2 Results 220
11.5 Trophic Effects and Organic Pathways 224
11.6 Herbivore-Mediated Changes in Quality and Quantity of Nutrient Fluxes 226
11.7 Synthesis and Conclusions 230
11.7.1 Understanding the Temporal Dynamics of Energy and Nutrient Fluxes 230
11.7.2 Understanding the Spatial Variability in Fluxes 231
<table>
<thead>
<tr>
<th>Section IV</th>
<th>Methods: Reducing, Enhancing and Simulating Insect Herbivory</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Simulating Herbivory: Problems and Possibilities</td>
</tr>
<tr>
<td></td>
<td>J. Hjältén</td>
</tr>
<tr>
<td>12.1</td>
<td>Summary</td>
</tr>
<tr>
<td>12.2</td>
<td>Introduction to the Problem</td>
</tr>
<tr>
<td>12.3</td>
<td>Advantages of Simulated Herbivory</td>
</tr>
<tr>
<td>12.4</td>
<td>Disadvantages of Simulated Herbivory</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Simple Biotic Interactions</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Complex Biotic Interactions</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Basic Ecosystem Processes</td>
</tr>
<tr>
<td>12.5</td>
<td>Conclusions and Suggestions for the Future</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

13	The Use and Usefulness of Artificial Herbivory in Plant–Herbivore Studies
	K. Lehtilä and E. Boalt
13.1	Summary
13.2	Introduction
13.3	Material and Methods
13.4	Commonness of Differences Between Natural and Artificial Herbivory
13.5	Strength of the Effect of Natural and Artificial Damage
13.6	Responses of Different Types of Response Traits to Artificial and Natural Damage
13.7	Simulations of Mammalian and Invertebrate Herbivory
13.8	Attempts of Exact Simulation
13.9	Conclusions
References	
14 From Mesocosms to the Field: The Role and Value of Cage Experiments in Understanding Top-Down Effects in Ecosystems .. 277
O.J. SCHMITZ

14.1 Summary .. 277
14.2 Introduction .. 278
14.3 Research Approach ... 281
14.4 In-Ecosystem Investigation Using Enclosure Experiments 282
14.4.1 Natural History: Knowing the Players in the System 282
14.4.2 Enclosure Cages: Design and Biophysical Properties ... 285
14.4.3 Considerations for the Design of Cage Experiments ... 288
14.4.3.1 Artificial Complements of Populations or Communities in Enclosure Cages Are Not Realistic 288
14.4.3.2 Experimental Outcome Could Be an Artifact of the Venue 288
14.4.3.3 Enclosures Unrealistically Constrain Movement of Species 289
14.4.3.4 Time Scale of Enclosure Experiments Exclude or Distort Important Features of Communities and Ecosystems 290
14.4.4 Mechanistic Insights from Enclosure Cage Experiments 290
14.4.4.1 Identifying the Potential for Top-Down Control 291
14.4.5 Of-Ecosystem Studies: Testing the Reliability of Mechanistic Insights from Cage Experiments 297
14.4.5.1 Direct and Indirect Effects of Top Predators 299
14.4.5.2 Top Predator Effects on Plant Diversity and Productivity 300
References .. 300

15 Reducing Herbivory Using Insecticides 303
E. SIEMANN, W.P CARSON, W.E. ROGERS and W.W. WEISSER

15.1 Summary .. 303
15.2 Basic Concepts .. 303
15.3 Using Insecticides to Infer the Role of Herbivores 304
15.4 Ghost of Herbivory Past ... 307
15.5 Artifacts of Method May Masquerade as Release from Herbivory .. 308
15.5.1 What Types of Artifacts Are a Concern? 308
15.5.2 Overview of Published Studies 309
15.5.3 Quantification of Herbivore Damage 310
15.5.4 Phytotoxic Effects ... 311
15.5.5 Insecticides May Be Toxic to Several Groups of Insects 313
15.5.6 Effects of Insecticides on Non-Arthropods 314
15.5.7 Effects of Insecticides on Soil Organisms 314
16 The Role of Herbivores in Exotic Plant Invasions:
Insights Using a Combination of Methods to Enhance
or Reduce Herbivory .. 329
W.E. Rogers and E. Siemann

16.1 Summary .. 329
16.2 Introduction ... 329
16.3 The Role of Herbivores in Exotic Plant Invasions 330
16.4 Focal Plant Species ... 331
16.5 Experimental Methods for Assessing Herbivory Effects .. 331
16.5.1 Common Garden/Reciprocal Transplant Studies 332
16.5.2 Reducing Herbivory on Target Plants
Using Insecticide Sprays ... 336
16.5.3 Reducing Herbivory on Community Assemblages
Using Insecticide Sprays ... 337
16.5.4 Factorial Manipulations of Herbivory, Resources
and Competition .. 338
16.5.5 Simulating Herbivory Via Mechanical Leaf Damage .. 339
16.5.6 Simulating Herbivory Via Mechanical Root Damage .. 341
16.5.7 Simulating Herbivory Using Herbicide Sprays 342
16.5.8 Assessing Herbivore Damage Using Exclosures
and Enclosures .. 344
16.6 Implications and Potential Significance 347
References .. 349

17 Herbivore-Specific Transcriptional Responses
and Their Research Potential for Ecosystem Studies 357
C. Voelckel and I.T. Baldwin

17.1 Summary .. 357
17.2 The Subtle Effects of Insects on Ecosystem Function 357
17.3 Transcriptional Regulation of Plant Responses 358
17.4 Insect-Induced Transcriptional Changes 362
Section V Synthesis

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Testing the Role of Insects in Ecosystem Functioning</td>
<td>383</td>
</tr>
</tbody>
</table>

E. Siemann and W.W. Weisser

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Summary</td>
<td>383</td>
</tr>
<tr>
<td>18.2</td>
<td>Introduction</td>
<td>384</td>
</tr>
<tr>
<td>18.3</td>
<td>Simple Models of Niche Space</td>
<td>385</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Reduced Vigour Model</td>
<td>385</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Reduced Range of Tolerance Model</td>
<td>387</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Specialist Herbivores</td>
<td>388</td>
</tr>
<tr>
<td>18.4</td>
<td>Effects of Herbivores in Resource Competition Models</td>
<td>389</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Specialist Herbivores in Resource Competition Models</td>
<td>391</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Generalist Herbivores in Resource Competition Models</td>
<td>395</td>
</tr>
<tr>
<td>18.5</td>
<td>Differential Impacts on Plants with Different Traits</td>
<td>396</td>
</tr>
<tr>
<td>18.6</td>
<td>Conclusions from the Modelling Work</td>
<td>396</td>
</tr>
<tr>
<td>18.7</td>
<td>Suggestions for Future Studies</td>
<td>397</td>
</tr>
<tr>
<td>18.7.1</td>
<td>Exploring Below- and Aboveground Interactions in More Detail</td>
<td>397</td>
</tr>
<tr>
<td>18.7.2</td>
<td>Measuring Herbivory Effects at Nominal Levels as Well as in Outbreak Situations</td>
<td>398</td>
</tr>
<tr>
<td>18.7.3</td>
<td>Quantifying the Effects of Plant Resource Allocation Under Herbivory for Ecosystem Functioning</td>
<td>399</td>
</tr>
<tr>
<td>18.7.4</td>
<td>Combining Various Methodologies to Achieve an Understanding of Insect Effects on Ecosystem Function</td>
<td>399</td>
</tr>
</tbody>
</table>

References

- 18.7.1 Exploring Below- and Aboveground Interactions in More Detail 397
- 18.7.2 Measuring Herbivory Effects at Nominal Levels as Well as in Outbreak Situations 398
- 18.7.3 Quantifying the Effects of Plant Resource Allocation Under Herbivory for Ecosystem Functioning 399
- 18.7.4 Combining Various Methodologies to Achieve an Understanding of Insect Effects on Ecosystem Function 399

<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>403</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taxonomic Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>409</td>
</tr>
</tbody>
</table>
Insects and Ecosystem Function
Weisser, W.W.; Siemann, E. (Eds.)
2008, XXI, 415 p., Hardcover
ISBN: 978-3-540-21672-8