Section I Introduction

1 The Various Effects of Insects on Ecosystem Functioning . 3
W.W. WEISSER and E. SIEMANN

1.1 Summary ... 3
1.2 Introduction .. 3
1.3 A Brief Overview of Insect Effects on Ecosystem Function . 8
1.3.1 Insect Effects on Ecosystem Function
Via Interactions with Plants 8
1.3.1.1 Herbivory 8
1.3.1.2 Plant–Insect Mutualisms 14
1.3.2 Other Direct and Indirect Effects of Insects
on Ecosystem Function 14
1.4 The Aim and Structure of this Book 15
References ... 19

Section II Insects and the Belowground System

2 Insect Herbivores, Nutrient Cycling and Plant Productivity 27
S.E. HARTLEY and T. H. JONES

2.1 Summary ... 27
2.2 Introduction .. 28
2.3 Decomposition 28
2.3.1 The Resources Available 28
2.3.2 Effects of Insect Herbivory on Decomposition 31
Contents

2.3.2.1 Herbivory and Litter Quality .. 31
2.3.2.2 Herbivory, Root Exudation and Root Biomass 32
2.4 Nutrient Cycling and Plant Productivity 33
2.4.1 Effects on Carbon and Nitrogen Cycling 34
2.4.1.1 Methane and Carbon Dioxide 34
2.4.1.2 Nitrogen and Phosphorus 35
2.4.1.3 Inputs from Aboveground Herbivores 36
2.4.1.4 The Importance of Belowground Biota: Evidence from Controlled Environment Studies .. 39
2.4.1.5 Insect Herbivory and Spatial Variation in Nutrient Availability .. 40
2.4.2 Herbivory and Plant Biomass ... 41
2.5 Conclusions .. 45
References .. 46

3 Indirect Effects of Invertebrate Herbivory on the Decomposer Subsystem .. 53
D.A. Wardle and R.D. Bardgett
3.1 Summary .. 53
3.2 Introduction .. 54
3.3 Mechanistic Bases of Invertebrate Herbivore Effects 54
3.3.1 Immediate Effects on Resource Quantity 56
3.3.2 Longer-Term Effects on Resource Quantity 56
3.3.3 Effects of Changed Litter Quality 57
3.3.4 Return of Invertebrate Waste Products 58
3.3.5 Effects of Changes in Vegetation Composition 59
3.3.6 Feedbacks and Aboveground Consequences 61
3.4 Significance of Invertebrate Herbivore Outbreaks 61
3.5 Multiple Species Herbivore Communities 62
3.6 Comparisons of Ecosystems .. 64
3.7 Conclusions .. 65
References .. 66

4 Biotic Interactions in the Rhizosphere: Effects on Plant Growth and Herbivore Development 71
M. Bonkowski and S. Scheu
4.1 Summary .. 71
4.2 The Rhizosphere – Interface of Intense Microbial and Faunal Interactions ... 72
6.3.1 Hypotheses Predicting the Response of Herbivores to Higher Plant Diversity 117
6.3.2 Responses of Specialist and Generalist Herbivores in Plant Diversity Experiments 119
6.3.3 Concomitant Responses of Natural Enemies of Herbivores .. 123
6.3.4 Insect Herbivores as Drivers of Ecosystem Processes ... 124
6.4 Effects of Plant Diversity on Pathogens ... 125
6.5 Belowground Food Web .. 126
6.5.1 Plant Biomass and Microbial Response ... 126
6.5.2 Soil Animals that Feed on Microbes ... 128
6.6 Conclusions .. 129
References .. 130

7 The Potential of Phytophagous Insects in Restoring Invaded Ecosystems: Examples from Biological Weed Control .. 135
H. Zwölfer and H. Zimmermann

7.1 Summary .. 135
7.2 Introduction .. 136
7.3 Success Rates and Successes in Biological Weed Control ... 137
7.4 Weed Characteristics and Positive Traits of Insects in Biological Control ... 138
7.4.1 Weed Species .. 139
7.4.2 Insect Species .. 139
7.5 Three Examples of Successful Weed Control ... 140
7.5.1 Rhinocyllus conicus on Carduus nutans ... 140
7.5.2 Interactions Between Three Weevil Species in the Biocontrol of the Invader Sesbania punicea in South Africa ... 143
7.5.2.1 The Seed-Destroying Agents: Trichapion lativentre and Rhysomatus marginatus ... 144
7.5.2.2 The Stem-Borer: Neodiplogrammus quadritittatus ... 145
7.5.3 Aquatic Weeds .. 146
7.6 Discussion and Conclusions .. 147
References .. 150

8 Plant-Insect–Pathogen Interactions on Local and Regional Scales ... 155
A. Kruess, S. Eber, S. Kluth and T. Tscharntke

8.1 Summary .. 155
8.2 Introduction .. 156
8.3 Biological Weed Control, Interactions and Ecosystem Processes 157
8.3.1 Classical Biological Control 157
8.3.2 Plant–Pathogen–Herbivore Interactions 158
8.4 Creeping Thistle, Insects, Pathogens and Processes 160
8.4.1 The Creeping Thistle (Cirsium arvense) 160
8.4.2 Interactions Between Pathogens and Insect Vectors on a Local Scale 161
8.4.3 Regional Dynamics of Cirsium arvense and an Associated Herbivore 163
8.4.4 The Influence of Landscape Context at Different Spatial Scales 165
8.5 Conclusions and Future Outlook 168
References 169

9 Food Web Interactions and Ecosystem Processes 175
A. JANSSEN and M.W. SABELIS

9.1 Summary 175
9.2 Introduction 175
9.3 Interactions Among Entire Trophic Levels 178
9.4 Effects of Diversity Within Trophic Levels 179
9.4.1 Apparent Competition 180
9.4.2 Omnivory 180
9.4.3 Intraguild Predation 181
9.4.4 Plant-Mediated Indirect Interactions Between Herbivores 181
9.4.5 Indirect Plant Defences 182
9.4.6 Interactions Among Plants 183
9.4.7 Behavioural Effects 184
9.5 Conclusions and Perspectives 184
References 186

10 A General Rule for Predicting When Insects Will Have Strong Top-Down Effects on Plant Communities: On the Relationship Between Insect Outbreaks and Host Concentration 193
W.P. CARSON, J. PATRICK CRONIN and Z.T. LONG

10.1 Summary 193
10.2 Introduction 193
10.3 The Significance of Insect Outbreaks 194
14 From Mesocosms to the Field: The Role and Value of Cage Experiments in Understanding Top-Down Effects in Ecosystems 277
O.J. SCHMITZ

14.1 Summary ... 277
14.2 Introduction .. 278
14.3 Research Approach 281
14.4 In-Ecosystem Investigation Using Enclosure Experiments 282
14.4.1 Natural History: Knowing the Players in the System 282
14.4.2 Enclosure Cages: Design and Biophysical Properties 285
14.4.3 Considerations for the Design of Cage Experiments 288
14.4.3.1 Artificial Complements of Populations or Communities in Enclosure Cages Are Not Realistic 288
14.4.3.2 Experimental Outcome Could Be an Artifact of the Venue 288
14.4.3.3 Enclosures Unrealistically Constrain Movement of Species 289
14.4.3.4 Time Scale of Enclosure Experiments Exclude or Distort Important Features of Communities and Ecosystems 290
14.4.4 Mechanistic Insights from Enclosure Cage Experiments 290
14.4.5 Identifying the Potential for Top-Down Control 291
14.4.5.1 Direct and Indirect Effects of Top Predators 299
14.4.5.2 Top Predator Effects on Plant Diversity and Productivity 300
References ... 300

15 Reducing Herbivory Using Insecticides 303
E. SIEMANN, W.P CARSON, W.E. ROGERS and W.W. WEISSER

15.1 Summary ... 303
15.2 Basic Concepts .. 303
15.3 Using Insecticides to Infer the Role of Herbivores 304
15.4 Ghost of Herbivory Past 307
15.5 Artifacts of Method May Masquerade as Release from Herbivory .. 308
15.5.1 What Types of Artifacts Are a Concern? 308
15.5.2 Overview of Published Studies 309
15.5.3 Quantification of Herbivore Damage 310
15.5.4 Phytotoxic Effects 311
15.5.5 Insecticides May Be Toxic to Several Groups of Insects 313
15.5.6 Effects of Insecticides on Non-Arthropods 314
15.5.7 Effects of Insecticides on Soil Organisms 314
16 The Role of Herbivores in Exotic Plant Invasions: Insights Using a Combination of Methods to Enhance or Reduce Herbivory

W.E. Rogers and E. Siemann

16.1 Summary

16.2 Introduction

16.3 The Role of Herbivores in Exotic Plant Invasions

16.4 Focal Plant Species

16.5 Experimental Methods for Assessing Herbivory Effects

16.5.1 Common Garden/Reciprocal Transplant Studies

16.5.2 Reducing Herbivory on Target Plants Using Insecticide Sprays

16.5.3 Reducing Herbivory on Community Assemblages Using Insecticide Sprays

16.5.4 Factorial Manipulations of Herbivory, Resources and Competition

16.5.5 Simulating Herbivory Via Mechanical Leaf Damage

16.5.6 Simulating Herbivory Via Mechanical Root Damage

16.5.7 Simulating Herbivory Using Herbicide Sprays

16.5.8 Assessing Herbivore Damage Using Exclosures and Enclosures

16.6 Implications and Potential Significance

References

17 Herbivore-Specific Transcriptional Responses and Their Research Potential for Ecosystem Studies

C. Voelckel and I.T. Baldwin

17.1 Summary

17.2 The Subtle Effects of Insects on Ecosystem Function

17.3 Transcriptional Regulation of Plant Responses

17.4 Insect-Induced Transcriptional Changes
Section V Synthesis

18 Testing the Role of Insects in Ecosystem Functioning 383
 E. Siemann and W.W. Weisser

<table>
<thead>
<tr>
<th></th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Summary</td>
<td>383</td>
</tr>
<tr>
<td>18.2</td>
<td>Introduction</td>
<td>384</td>
</tr>
<tr>
<td>18.3</td>
<td>Simple Models of Niche Space</td>
<td>385</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Reduced Vigour Model</td>
<td>385</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Reduced Range of Tolerance Model</td>
<td>387</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Specialist Herbivores</td>
<td>388</td>
</tr>
<tr>
<td>18.4</td>
<td>Effects of Herbivores in Resource Competition Models</td>
<td>389</td>
</tr>
<tr>
<td>18.4.1</td>
<td>Specialist Herbivores in Resource Competition Models</td>
<td>391</td>
</tr>
<tr>
<td>18.4.2</td>
<td>Generalist Herbivores in Resource Competition Models</td>
<td>395</td>
</tr>
<tr>
<td>18.5</td>
<td>Differential Impacts on Plants with Different Traits</td>
<td>396</td>
</tr>
<tr>
<td>18.6</td>
<td>Conclusions from the Modelling Work</td>
<td>396</td>
</tr>
<tr>
<td>18.7</td>
<td>Suggestions for Future Studies</td>
<td>397</td>
</tr>
<tr>
<td>18.7.1</td>
<td>Exploring Below- and Aboveground Interactions in More Detail</td>
<td>397</td>
</tr>
<tr>
<td>18.7.2</td>
<td>Measuring Herbivory Effects at Nominal Levels as Well as in Outbreak Situations</td>
<td>398</td>
</tr>
<tr>
<td>18.7.3</td>
<td>Quantifying the Effects of Plant Resource Allocation Under Herbivory for Ecosystem Functioning</td>
<td>399</td>
</tr>
<tr>
<td>18.7.4</td>
<td>Combining Various Methodologies to Achieve an Understanding of Insect Effects on Ecosystem Function</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>400</td>
</tr>
</tbody>
</table>

Subject Index . 403

Taxonomic Index . 409
Insects and Ecosystem Function
Weisser, W.W.; Siemann, E. (Eds.)
2008, XXI, 415 p., Hardcover
ISBN: 978-3-540-21672-8