Contents

1 Background on Continuum Damage Mechanics 1
 1.1 Physics and Damage Variables 1
 1.1.1 Definition of a Scalar Damage Variable 3
 1.1.2 Definition of Several Scalar Damage Variables 3
 1.1.3 Definition of a Tensorial Damage Variable 4
 1.1.4 Effective Stress Concept 5
 1.1.5 Effects of Damage 7
 1.2 Thermodynamics of Damage 7
 1.2.1 General Framework 7
 1.2.2 State Potential for Isotropic Damage 10
 1.2.3 State Potential for Anisotropic Damage 11
 1.2.4 Quasi-Unilateral Conditions of Microdefects Closure .. 12
 1.3 Measurement of Damage 16
 1.3.1 Isotropic Elasticity Change 17
 1.3.2 Isotropic Elasticity Change by Ultrasonic Waves ... 17
 1.3.3 Anisotropic Elasticity Change 18
 1.3.4 Hardness Change 22
 1.3.5 Elasticity Field Change 23
 1.4 Kinetic Laws of Damage Evolution 26
 1.4.1 Damage Threshold and Mesocrack Initiation 27
 1.4.2 Formulation of the Isotropic Unified Damage Law ... 32
 1.4.3 Formulation of the Anisotropic Damage Law 34
 1.4.4 Fast Identification of Damage Material Parameters .. 35
 1.4.5 Generalization of the Unified Damage Law 41
 1.5 Elasto-(Visco-)Plasticity Coupled with Damage 45
 1.5.1 Basic Equations without Damage Coupling 45
 1.5.2 Coupling with Isotropic Damage 52
 1.5.3 Coupling with Anisotropic Damage 56
 1.5.4 Non-Isothermal Behavior 60
 1.5.5 Two-Scale Model for Damage at Microscale 60
1.6 Localization and Mesocrack Initiation 65
 1.6.1 Critical Damage Criterion 65
 1.6.2 Strain Damage Localization Criterion 65
 1.6.3 Size and Orientation of the Crack Initiated 73

2 Numerical Analysis of Damage .. 77
 2.1 Uncoupled Analysis ... 78
 2.1.1 Uniaxial Loading 79
 2.1.2 Proportional Loading 82
 2.1.3 Post-processing a (Visco-)Plastic Computation 85
 2.1.4 Post-processing an Elastic Computation 86
 2.1.5 Jump-in-Cycles Procedure in Fatigue 88
 2.2 Fully-Coupled Analysis .. 90
 2.2.1 Nonlinear Material Behavior FEA 91
 2.2.2 FE Resolution of the Global Equilibrium 94
 2.2.3 Local Integration Subroutines 96
 2.2.4 Single Implicit Algorithm for Damage Models 97
 2.2.5 Damage Models with Microdefects Closure Effect 105
 2.2.6 Performing FE Damage Computations 111
 2.2.7 Localization Limiters 112
 2.3 Locally-Coupled Analysis 114
 2.3.1 Post-Processing a Reference Structure Calculation 115
 2.3.2 Implicit Scheme for the Two-Scale Model 117
 2.3.3 DAMAGE 2000 Post-Processor 119
 2.4 Precise Identification of Material Parameters 120
 2.4.1 Formulation of an Identification Problem 121
 2.4.2 Minimization Algorithm for Least Squares Problems 123
 2.4.3 Procedure for Numerical Identification 127
 2.4.4 Cross Identification of Damage Evolution Laws 132
 2.4.5 Validation Procedure 133
 2.4.6 Sensitivity Analysis 135
 2.5 Hierarchic Approach and Model Updating 137
 2.6 Table of Material Damage Parameters 138

3 Ductile Failures ... 141
 3.1 Engineering Considerations 142
 3.2 Fast Calculation of Structural Failures 142
 3.2.1 Uniaxial Behavior and Validation of the Damage Law 143
 3.2.2 Case of Proportional Loading 144
 3.2.3 Sensitivity Analysis 146
 3.2.4 Stress Concentration and the Neuber Method 147
 3.2.5 Safety Margin and Crack Arrest 152
3.3 Basic Engineering Examples .. 154
 3.3.1 Plates or Members with Holes or Notches 154
 3.3.2 Pressurized Shallow Cylinders 156
 3.3.3 Post-Buckling in Bending 158
 3.3.4 Damage Criteria in Proportional Loading 160
3.4 Numerical Failure Analysis 166
 3.4.1 Finite Strains 167
 3.4.2 Deep Drawing Limits 170
 3.4.3 Damage in Cold Extrusion Process 172
 3.4.4 Crack Initiation Direction 174
 3.4.5 Porous Materials – the Gurson Model 176
 3.4.6 Frames Analysis by Lumped Damage Mechanics 181
 3.4.7 Predeformed and Predamaged Initial Conditions ... 184
 3.4.8 Hierarchic Approach up to Full Anisotropy 188
4 Low Cycle Fatigue ... 191
 4.1 Engineering Considerations 192
 4.2 Fast Calculation of Structural Failures 192
 4.2.1 Uniaxial Behavior and Validation
 of the Damage Law 192
 4.2.2 Case of Proportional Loading 198
 4.2.3 Sensitivity Analysis 199
 4.2.4 Cyclic Elasto-Plastic Stress Concentration 201
 4.2.5 Safety Margin and Crack Growth 208
 4.3 Basic Engineering Examples 208
 4.3.1 Plate or Members with Holes or Notches 208
 4.3.2 Pressurized Shallow Cylinders 210
 4.3.3 Cyclic Bending of Beams 212
 4.4 Numerical Failure Analysis 213
 4.4.1 Effects of Loading History 214
 4.4.2 Multiaxial and Multilevel Fatigue Loadings 216
 4.4.3 Damage and Fatigue of Elastomers 221
 4.4.4 Predeformed and Predamaged Initial Conditions ... 227
 4.4.5 Hierarchic Approach
 up to Non-Proportional Effects 228
5 Creep, Creep-Fatigue, and Dynamic Failures 233
 5.1 Engineering Considerations 234
 5.2 Fast Calculation of Structural Failures 234
 5.2.1 Uniaxial Behavior and Validation
 of the Damage Law 235
 5.2.2 Case of Proportional Loading 237
 5.2.3 Sensitivity Analysis 241
 5.2.4 Elasto-Visco-Plastic Stress Concentration 244
 5.2.5 Safety Margin and Crack Growth 247
5.3 Basic Engineering Examples

5.3.1 Strain Rate
and Temperature-Dependent Yield Stress
5.3.2 Plates or Members with Holes or Notches
5.3.3 Pressurized Shallow Cylinder
5.3.4 Adiabatic Dynamics Post-Buckling in Bending

5.4 Numerical Failure Analysis

5.4.1 Hollow Sphere under External Pressure
5.4.2 Effect of Loading History: Creep-Fatigue
5.4.3 Creep-Fatigue
and Thermomechanical Loadings
5.4.4 Dynamic Analysis of Crash Problems
5.4.5 Ballistic Impact and Penetration of Projectiles
5.4.6 Predeformed and Predamaged Initial Conditions

5.4.7 Hierarchic Approach
up to Viscous Elastomers

6 High Cycle Fatigue

6.1 Engineering Considerations
6.2 Fast Calculation of Structural Failures

6.2.1 Characteristic Effects in High-Cycle Fatigue
6.2.2 Fatigue Limit Criteria
6.2.3 Two-Scale Damage Model in Proportional Loading
6.2.4 Sensitivity Analysis
6.2.5 Safety Margin and Crack Growth

6.3 Basic Engineering Examples

6.3.1 Plates or Members with Holes or Notches
6.3.2 Pressurized Shallow Cylinders
6.3.3 Bending of Beams
6.3.4 Random Loadings

6.4 Numerical Failure Analysis

6.4.1 Effects of Loading History
6.4.2 Non-Proportional Loading of a Thinned Shell
6.4.3 Random Distribution of Initial Defects
6.4.4 Stochastic Resolution by Monte Carlo Method
6.4.5 Predeformed and Predamaged Initial Conditions

6.4.6 Hierarchic Approaches
up to Surface and Gradient Effects

7 Failure of Brittle and Quasi-Brittle Materials

7.1 Engineering Considerations
7.2 Fast Calculations of Structural Failures

7.2.1 Damage Equivalent Stress Criterion
7.2.2 Interface Debonding Criterion
Engineering Damage Mechanics
Ductile, Creep, Fatigue and Brittle Failures
Lemaitre, J.; Desmorat, R.
2005, XXIII, 380 p., Hardcover
ISBN: 978-3-540-21503-5