Contents

1 **Introduction** .. 1

2 **Algorithms and Programs** ... 11
 2.1 Simple Algorithms .. 14
 2.1.1 Getting Started with Some Basics 15
 2.1.2 Recursive Functions .. 19
 2.1.3 The Termination Problem 23
 2.1.4 Symbolic Computations 24
 2.1.5 Operating on Lists .. 30
 2.2 A Word on Typing ... 31
 2.3 Summary ... 34

3 **An Algorithmic Language** .. 37
 3.1 The Syntax of al Expressions 38
 3.2 The Evaluation of al Expressions 41
 3.3 Summary ... 47

4 **The \(\lambda\)-Calculus** ... 51
 4.1 \(\lambda\)-Calculus Notation ... 52
 4.2 \(\beta\)-Reduction and \(\alpha\)-Conversion 53
 4.3 An Indexing Scheme for Bound Variables 59
 4.4 The Nameless \(\Lambda\)-Calculus 63
 4.5 Reduction Sequences .. 68
 4.6 Recursion in the \(\lambda\)-Calculus 73
 4.7 A Brief Outline of an Applied \(\lambda\)-Calculus 78
 4.8 Overview of a Typed \(\lambda\)-Calculus 79
 4.8.1 Monomorphic Types .. 81
 4.8.2 Polymorphic Types ... 83
 4.9 Summary ... 86
5 The SE(M)CD Machine and Others ... 89
 5.1 An Outline of the Original SECD Machine 89
 5.2 The SE(M)CD Machine .. 93
 5.2.1 The Traversal Mechanism .. 94
 5.2.2 Doing β-Reductions .. 96
 5.2.3 Reducing a Simple Expression 98
 5.3 The #SE(M)CD Machine for the Nameless A-Calculus 101
 5.4 Implementing δ-Reductions ... 102
 5.5 Other Weakly Normalizing Abstract Machines 105
 5.5.1 The K-Machine .. 105
 5.5.2 The Categorial Abstract Machine 107
 5.6 Summary .. 108

6 Toward Full-Fledged λ-Calculus Machines 113
 6.1 Berkling’s String Reduction Machine 115
 6.2 Wadsworth’s Graph Reduction Techniques 121
 6.3 The λσ-Calculus Abstract Machine 125
 6.3.1 The λσ-Calculus ** ... 126
 6.3.2 The Abstract Machine ** 130
 6.4 Head-Order Reduction .. 132
 6.4.1 Head Forms and Head-Order β-Reducions 134
 6.4.2 An Abstract Head-Order Reduction (HOR) Machine ** 141
 6.5 Summary .. 145

7 Interpreted Head-Order Graph Reduction 149
 7.1 Graph Representation and Graph Reduction 150
 7.2 Continuing with Reductions in the Head 156
 7.3 Reducing the Tails ... 160
 7.4 An Outline of the Formal Specification of G_{HOR} 163
 7.5 Garbage Collection .. 164
 7.6 Summary .. 167

8 The B-Machine ... 171
 8.1 The Operating Principles of the B-Machine 173
 8.2 The Instruction Set ... 174
 8.2.1 Instruction Interpretation Without Sharing ** 176
 8.2.2 Interpretation Under Sharing in the Head ** 179
 8.3 Executing B-Machine Code: an Example ** 181
 8.4 Supporting Primitive Functions 186
 8.5 Summary .. 189

9 The G-Machine ... 193
 9.1 Basic Language Issues .. 195
 9.2 Basic Operating Principles of the G-Machine 197
 9.3 Compiling Supercombinators to G-Machine Code 201
13.6 Compiling the Bubble-Sort Program 309
13.7 Outline of a Machine for a ‘Flat’ Language 312
13.8 Summary ... 318

14 Real Computing Machines 321
14.1 A Typical CISC Architecture 323
 14.1.1 The Register Set, Formats and Addressing in Memory 324
 14.1.2 Addressing Modes 326
 14.1.3 Some Important Instructions 328
 14.1.4 Implementing Procedure Calls 330
14.2 A Typical RISC Architecture 334
 14.2.1 The SPARC Register Set 335
 14.2.2 Some Important SPARC Instructions 339
 14.2.3 The SPARC Assembler Code for Factorial 341
14.3 Summary ... 344

A Input/Output .. 347
 A.1 Functions as Input/Output Mappings 348
 A.2 Continuation-Style Input/Output 354
 A.3 Interactions with a File System 357

B On Theorem Proving 361

References .. 369

Index .. 377
Abstract Computing Machines
A Lambda Calculus Perspective
Kluge, W.
2005, XIV, 384 p. 89 illus., Hardcover
ISBN: 978-3-540-21146-4