Table of Contents

1 Mean-square approximation for stochastic differential equations ... 1
 1.1 Fundamental theorem on the mean-square order of convergence 3
 1.1.1 Statement of the theorem .. 3
 1.1.2 Proof of the fundamental theorem 5
 1.1.3 The fundamental theorem for equations in the sense of Stratonovich 9
 1.1.4 Discussion ... 10
 1.1.5 The explicit Euler method ... 12
 1.1.6 Nonglobally Lipschitz conditions 16
 1.2 Methods based on Taylor-type expansion .. 18
 1.2.1 Taylor expansion of solutions of ordinary differential equations 18
 1.2.2 Wagner–Platen expansion of solutions of stochastic differential equations . 19
 1.2.3 Construction of explicit methods 23
 1.3 Implicit mean-square methods .. 29
 1.3.1 Construction of drift-implicit methods 29
 1.3.2 The balanced method .. 33
 1.3.3 Implicit methods for SDEs with locally Lipschitz vector fields 37
 1.3.4 Fully implicit mean-square methods: The main idea 38
 1.3.5 Convergence theorem for fully implicit methods 41
 1.3.6 General construction of fully implicit methods 43
 1.4 Modeling of Ito integrals .. 45
 1.4.1 Ito integrals depending on a single noise and methods of order 3/2 and 2 45
 1.4.2 Modeling Ito integrals by the rectangle and trapezium methods 51
 1.4.3 Modeling Ito integrals by the Fourier method 54
 1.5 Explicit and implicit methods of order 3/2 for systems with additive noise 60
 1.5.1 Explicit methods based on Taylor-type expansion 60
 1.5.2 Implicit methods based on Taylor-type expansion 62
Table of Contents

1.5.3 Stiff systems of stochastic differential equations with additive noise. A-stability .. 66
1.5.4 Runge–Kutta type methods ... 71
1.5.5 Two-step difference methods ... 75
1.6 Numerical schemes for equations with colored noise 77
1.6.1 Explicit schemes of orders 2 and 5/2 78
1.6.2 Runge–Kutta schemes .. 80
1.6.3 Implicit schemes ... 81

2 Weak approximation for stochastic differential equations .. 83
2.1 One-step approximation .. 87
2.1.1 Properties of remainders and Ito integrals 88
2.1.2 One-step approximations of third order 92
2.1.3 The Taylor expansion of mathematical expectations 98
2.2 The main theorem on convergence of weak approximations and methods of order two 99
2.2.1 The general convergence theorem 100
2.2.2 Runge–Kutta type methods .. 104
2.2.3 The Talay–Tubaro extrapolation method 105
2.2.4 Implicit method ... 109
2.3 Weak methods for systems with additive and colored noise .. 112
2.3.1 Second-order methods .. 113
2.3.2 Main lemmas for third-order methods 113
2.3.3 Construction of a method of order three 116
2.3.4 Weak schemes for systems with colored noise 121
2.4 Variance reduction ... 123
2.4.1 The method of important sampling 123
2.4.2 Variance reduction by control variates and combining method .. 126
2.4.3 Variance reduction for boundary value problems 129
2.5 Application of weak methods to the Monte Carlo computation of Wiener integrals 130
2.5.1 The trapezium, rectangle, and other methods of second order .. 133
2.5.2 A fourth-order Runge–Kutta method for computing Wiener integrals of functionals of exponential type 135
2.5.3 Explicit Runge–Kutta method of order four for conditional Wiener integrals of exponential-type functionals .. 137
2.5.4 Theorem on one-step error ... 140
2.5.5 Implicit Runge–Kutta methods for conditional Wiener integrals of exponential-type functionals 145
2.5.6 Numerical experiments ... 148
2.6 Random number generators ... 159
2.6.1 Some uniform random number generators 160
2.6.2 A specific test for SDE integration 163
2.6.3 Generation of Gaussian random numbers 166
2.6.4 Parallel implementation ... 168

3 Numerical methods for SDEs with small noise 171
3.1 Mean-square approximations and estimation of their errors 173
 3.1.1 Construction of one-step mean-square approximation 173
 3.1.2 Theorem on mean-square global estimate 175
 3.1.3 Selection of time increment h
 depending on parameter ε 177
 3.1.4 (h, ε)-approach versus (ε, h)-approach 177
3.2 Some concrete mean-square methods
for systems with small noise ... 178
 3.2.1 Taylor-type numerical methods 179
 3.2.2 Runge–Kutta methods ... 180
 3.2.3 Implicit methods .. 182
 3.2.4 Stratonovich SDEs with small noise 183
 3.2.5 Mean-square methods for systems
 with small additive noise .. 184
3.3 Numerical tests of mean-square methods 185
 3.3.1 Simulation of Lyapunov exponent of a linear system
 with small noise .. 185
 3.3.2 Stochastic model of a laser 188
3.4 The main theorem on error estimation and general approach
 to construction of weak methods 190
3.5 Some concrete weak methods .. 193
 3.5.1 Taylor-type methods ... 193
 3.5.2 Runge–Kutta methods ... 196
 3.5.3 Weak methods for systems with small additive noise 199
3.6 Expansion of the global error in powers of h and ε 202
3.7 Reduction of the Monte Carlo error 203
3.8 Simulation of the Lyapunov exponent of a linear system
 with small noise by weak methods 206

4 Stochastic Hamiltonian systems
 and Langevin-type equations ... 211
4.1 Preservation of symplectic structure 213
4.2 Mean-square symplectic methods
for stochastic Hamiltonian systems 216
 4.2.1 General stochastic Hamiltonian systems 216
 4.2.2 Explicit methods in the case of separable Hamiltonians 220
4.3 Mean-square symplectic methods for Hamiltonian systems
 with additive noise .. 224
 4.3.1 The case of a general Hamiltonian 224
 4.3.2 The case of separable Hamiltonians 231
4.3.3 The case of Hamiltonian
\[H(t, p, q) = \frac{1}{2} p^\top M^{-1} p + U(t, q) \] 234

4.4 Numerical tests of mean-square symplectic methods 237
4.4.1 Kubo oscillator ... 237
4.4.2 A model for synchrotron oscillations of particles
in storage rings ... 239
4.4.3 Linear oscillator with additive noise 240

4.5 Liouvillian methods for stochastic systems
preserving phase volume .. 246
4.5.1 Liouvillian methods for partitioned systems
with multiplicative noise 248
4.5.2 Liouvillian methods for a volume-preserving system
with additive noise ... 250

4.6 Weak symplectic methods for stochastic Hamiltonian systems 251
4.6.1 Hamiltonian systems with multiplicative noise 251
4.6.2 Hamiltonian systems with additive noise 255
4.6.3 Numerical tests ... 257

4.7 Quasi-symplectic mean-square methods
for Langevin-type equations 261
4.7.1 Langevin equation: Linear damping and additive noise 262
4.7.2 Langevin-type equation: Nonlinear damping
and multiplicative noise 270

4.8 Quasi-symplectic weak methods for Langevin-type equations . 273
4.8.1 Langevin equation: Linear damping and additive noise 273
4.8.2 Langevin-type equation: Nonlinear damping
and multiplicative noise 275
4.8.3 Numerical examples 276

5 Simulation of space and space-time bounded diffusions ... 283
5.1 Mean-square approximation for autonomous SDEs
without drift in a space bounded domain 286
5.1.1 Local approximation of diffusion
in a space bounded domain 287
5.1.2 Global algorithm for diffusion
in a space bounded domain 291
5.1.3 Simulation of exit point \(X_x(\tau_x) \) 301

5.2 Systems with drift in a space bounded domain 302
5.3 Space-time Brownian motion 306
5.3.1 Auxiliary knowledge 306
5.3.2 Some distributions for one-dimensional Wiener process 308
5.3.3 Simulation of exit time and exit point
of Wiener process from a cube 313
5.3.4 Simulation of exit point of the space-time
Brownian motion from a space-time parallelepiped
with cubic base .. 316
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Approximations for SDEs in a space-time bounded domain</td>
<td>317</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Local mean-square approximation in a space-time bounded domain</td>
<td>318</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Global algorithm in a space-time bounded domain</td>
<td>322</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Approximation of exit point ((\tau, X(\tau)))</td>
<td>325</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Simulation of space-time Brownian motion with drift</td>
<td>328</td>
</tr>
<tr>
<td>5.5</td>
<td>Numerical examples</td>
<td>329</td>
</tr>
<tr>
<td>5.6</td>
<td>Mean-square approximation of diffusion with reflection</td>
<td>337</td>
</tr>
<tr>
<td>6</td>
<td>Random walks for linear boundary value problems</td>
<td>339</td>
</tr>
<tr>
<td>6.1</td>
<td>Algorithms for solving the Dirichlet problem based on time-step control</td>
<td>339</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Theorems on one-step approximation</td>
<td>341</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Numerical algorithms and convergence theorems</td>
<td>348</td>
</tr>
<tr>
<td>6.2</td>
<td>The simplest random walk for the Dirichlet problem for parabolic equations</td>
<td>353</td>
</tr>
<tr>
<td>6.2.1</td>
<td>The algorithm of the simplest random walk</td>
<td>353</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Convergence theorem</td>
<td>356</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Other random walks</td>
<td>359</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Numerical tests</td>
<td>364</td>
</tr>
<tr>
<td>6.3</td>
<td>Random walks for the elliptic Dirichlet problem</td>
<td>365</td>
</tr>
<tr>
<td>6.3.1</td>
<td>The simplest random walk for elliptic equations</td>
<td>366</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Other methods for elliptic problems</td>
<td>370</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Numerical tests</td>
<td>372</td>
</tr>
<tr>
<td>6.4</td>
<td>Specific random walks for elliptic equations and boundary layer</td>
<td>374</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Conditional expectation of Ito integrals connected with Wiener process in the ball</td>
<td>376</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Specific one-step approximations for elliptic equations</td>
<td>380</td>
</tr>
<tr>
<td>6.4.3</td>
<td>The average number of steps</td>
<td>384</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Numerical algorithms and convergence theorems</td>
<td>388</td>
</tr>
<tr>
<td>6.5</td>
<td>Methods for elliptic equations with small parameter at higher derivatives</td>
<td>392</td>
</tr>
<tr>
<td>6.6</td>
<td>Methods for the Neumann problem for parabolic equations</td>
<td>397</td>
</tr>
<tr>
<td>6.6.1</td>
<td>One-step approximation for boundary points</td>
<td>399</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Convergence theorems</td>
<td>403</td>
</tr>
<tr>
<td>7</td>
<td>Probabilistic approach to numerical solution of the Cauchy problem for nonlinear parabolic equations</td>
<td>407</td>
</tr>
<tr>
<td>7.1</td>
<td>Probabilistic approach to linear parabolic equations</td>
<td>408</td>
</tr>
<tr>
<td>7.2</td>
<td>Layer methods for semilinear parabolic equations</td>
<td>415</td>
</tr>
<tr>
<td>7.2.1</td>
<td>The construction of layer methods</td>
<td>415</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Convergence theorem for a layer method</td>
<td>419</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Numerical algorithms</td>
<td>422</td>
</tr>
<tr>
<td>7.3</td>
<td>Multi-dimensional case</td>
<td>427</td>
</tr>
</tbody>
</table>
7.3.1 Multidimensional parabolic equation 427
7.3.2 Probabilistic approach to reaction-diffusion systems ... 429
7.4 Numerical examples .. 431
7.5 Probabilistic approach to semilinear parabolic equations
with small parameter ... 438
 7.5.1 Implicit layer method and its convergence 440
 7.5.2 Explicit layer methods ... 442
 7.5.3 Singular case ... 443
 7.5.4 Numerical algorithms based on interpolation 445
7.6 High-order methods for semilinear equation with small
constant diffusion and zero advection 446
 7.6.1 Two-layer methods ... 447
 7.6.2 Three-layer methods ... 448
7.7 Numerical tests ... 451
 7.7.1 The Burgers equation with small viscosity 452
 7.7.2 The generalized FKPP-equation
with a small parameter .. 455

8 Numerical solution of the nonlinear Dirichlet and
Neumann problems based on the probabilistic approach 461
8.1 Layer methods for the Dirichlet problem
for semilinear parabolic equations 461
 8.1.1 Construction of a layer method of first order 463
 8.1.2 Convergence theorem ... 467
 8.1.3 A layer method with a simpler approximation
near the boundary .. 468
 8.1.4 Numerical algorithms and their convergence 474
8.2 Extension to the multi-dimensional Dirichlet problem 476
8.3 Numerical tests of layer methods for the Dirichlet problems 479
 8.3.1 The Burgers equation ... 479
 8.3.2 Comparison analysis .. 482
 8.3.3 Quasilinear equation with power law nonlinearities ... 485
8.4 Layer methods for the Neumann problem
for semilinear parabolic equations 488
 8.4.1 Construction of layer methods 489
 8.4.2 Convergence theorems ... 493
 8.4.3 Numerical algorithms .. 497
 8.4.4 Some other layer methods 499
8.5 Extension to the multi-dimensional Neumann problem 501
8.6 Numerical tests for the Neumann problem 503
 8.6.1 Comparison of various layer methods 503
 8.6.2 A comparison analysis of layer methods
and finite-difference schemes 505
9 Application of stochastic numerics to models with stochastic resonance and to Brownian ratchets 509
 9.1 Noise-induced regular oscillations in systems with stochastic resonance 510
 9.1.1 Sufficient conditions for regular oscillations 512
 9.1.2 Comparison with the approach based on Kramers’ theory of diffusion over a potential barrier 517
 9.1.3 High-frequency regular oscillations in systems with multiplicative noise 518
 9.1.4 Large-amplitude regular oscillations in monostable system 523
 9.1.5 Regular oscillations in a system of two coupled oscillators 525
 9.2 Noise-induced unidirectional transport 526
 9.2.1 Systems with state-dependent diffusion 528
 9.2.2 Forced thermal ratchets 533

A Appendix: Practical guidance to implementation of the stochastic numerical methods 541
 A.1 Mean-square methods 541
 A.2 Weak methods and the Monte Carlo technique 544
 A.3 Algorithms for bounded diffusions 550
 A.4 Random walks for linear boundary value problems 558
 A.5 Nonlinear PDEs 560
 A.6 Miscellaneous 565

References 571

Index 587
Stochastic Numerics for Mathematical Physics
Milstein, G.N.; Tretyakov, M.V.
2004, XIX, 596 p., Hardcover
ISBN: 978-3-540-21110-5