## Contents

### Part I  Introduction

1  **Introduction**  ................................................. 3  
   E. Matzner  

1.1  General Introduction  ........................................... 3  
1.2  Goals and Approaches of BITÖK Research  ....................... 4  
1.3  Scope of the Synthesis and Problems Addressed  ................... 5  
References  ......................................................... 10  

2  **The Lehstenbach and Steinkreuz Catchments in NE Bavaria, Germany**  .................................................................. 15  
P. Gerstberger, T. Foken, and K. Kalbitz  

2.1  The Lehstenbach Catchment  
in the Fichtelgebirge Mountains  ........................................... 15  
2.2  The Steinkreuz Catchment in the Steigerwald Hillsides  ....... 30  
References  ......................................................... 40  

### Part II  The Changing Environment

3  **Trace Gases and Particles in the Atmospheric Boundary Layer at the Waldstein Site: Present State and Historic Trends**  ................................................. 45  
O. Klemm  

3.1  Introduction  ....................................................... 45  
3.2  Sites  ............................................................. 46  
3.3  Trends in Sulfur Dioxide  .......................................... 46  
3.4  Trends in Nitrogen Gases  ......................................... 48
3.5 Trends in Ozone ........................................... 50
3.6 Trends in Fog Chemistry ............................... 53
3.7 Aerosol Particles .......................................... 54
3.8 Conclusions ................................................ 56
References ..................................................... 57

4 Climate Change in the Lehstenbach Region ............. 59

4.1 Introduction ............................................... 59
4.2 Change of Climatological Elements .................... 59
4.3 Consequences of Climate Change ..................... 65
4.4 Conclusions ............................................... 65
References ..................................................... 66

Part III Vegetation Response

5 Atmospheric and Structural Controls on Carbon and
Water Relations in Mixed-Forest Stands of Beech and Oak . 69
B. Köstner, M. Schmidt, E. Falge, S. Fleck,
and J.D. Tenhunen

5.1 Introduction ............................................... 69
5.2 The Study Sites Steinkreuz and Großebene .......... 71
5.3 Analysis of Canopy Transpiration and Conductance
by Means of Sap Flow Measurements .................... 76
5.4 Analysis of Carbon and Water Relations
by Structural Variation in Model Systems ............... 87
5.5 Conclusions ............................................... 90
References ..................................................... 93

6 Impacts of Canopy Internal Gradients on Carbon
and Water Exchange of Beech and Oak Trees .............. 99
S. Fleck, M. Schmidt, B. Köstner, W. Faltin,
and J.D. Tenhunen

6.1 Introduction ............................................... 99
6.2 Crown Structures of Mature Beech and Oak Trees .... 104
6.3 Leaf Properties ............................................ 109
6.4 A Modelling Study on the Gas-Exchange of Leaf Clouds .. 115
7 Soil CO₂ Fluxes in Spruce Forests – Temporal and Spatial Variation, and Environmental Controls

J.-A. Subke, N. Buchmann, and J. D. Tenhunen

7.1 Introduction
7.2 Measuring Sites
7.3 Temporal Variation of Soil CO₂ Efflux
7.4 Within- and Between-Stand Variation of Soil CO₂ Efflux
7.5 The Annual C Budget of the Forest Soil
7.6 Conclusions

References

8 Carbon Budget of a Spruce Forest Ecosystem


8.1 Introduction
8.2 Measuring Site and Quality Control
8.3 Calculation of Fluxes
8.4 Results and Discussion
8.5 Conclusions

References

9 Structure of Carbon Dioxide Exchange Processes Above a Spruce Forest

B. Wichura, J. Ruppert, A. C. Delany, N. Buchmann, and T. Foken

9.1 Introduction and ¹³C Signatures
9.2 Balances of ¹³C and CO₂
9.3 Hyperbolic Relaxed Eddy Accumulation (HREA) as a Relevant Measuring Method
9.4 Results
9.5 Conclusions

References
10 Modeling the Vegetation Atmospheric Exchange with a Transilient Model

M. Berger, R. Dlugi, and T. Foken

10.1 Introduction
10.2 Short Description of FLAME
10.3 Model Initialization for the Case Study
10.4 Comparison of Measured and Modeled Fluxes
10.5 Conclusions

References

11 Fog Deposition and its Role in Biogeochemical Cycles of Nutrients and Pollutants

T. Wrzesinsky, C. Scheer, and O. Klemm

11.1 Introduction
11.2 Site
11.3 Fog Chemistry
11.4 Direct Measurement of Fog Deposition
11.5 Fog Deposition Model
11.6 Discussion
11.7 Conclusions

References

12 Turbulent Deposition of Ozone to a Mountainous Forest Ecosystem

O. Klemm, A. Mangold, and A. Held

12.1 Introduction
12.2 Site
12.3 Experimental Setup
12.4 Big Leaf Model
12.5 Modelled Fluxes
12.6 Deposition to the Forest Canopy
12.7 Deposition to the Forest Ground
12.8 Synthesis and Conclusions

References
13 The Emissions of Biogenic Volatile Organic Compounds (BVOC) and Their Relevance to Atmospheric Particle Dynamics

R. Steinbrecher, B. Rappenglück, A. Hansel, M. Graus, O. Klemm, A. Held, A. Wiedensohler, and A. Nowak

13.1 Introduction ........................................... 215
13.2 Flux Measurement Methods ............................ 218
13.3 Fluxes of Primary and Secondary BVOC ............ 220
13.4 Modelled Versus Measured Isoprenoid Emission ...... 223
13.5 Particle Size Distribution and Fluxes ............... 225
13.6 Conclusions ............................................ 227
References ...................................................... 228

14 Trends in Deposition and Canopy Leaching of Mineral Elements as Indicated by Bulk Deposition and Throughfall Measurements

E. Matzner, T. Zuber, C. Alewell, G. Lischeid, and K. Moritz

14.1 Introduction ........................................... 233
14.2 Trends of Concentrations .............................. 235
14.3 Trends of Fluxes and Total Deposition ............... 238
14.4 Rates and Trends of Canopy Leaching ............... 245
14.5 Conclusions ............................................ 247
References ...................................................... 248

15 Phyllosphere Ecology in a Changing Environment: The Role of Insects in Forest Ecosystems

B. Stadler and B. Michalzik

15.1 Introduction ........................................... 251
15.2 Ecology of Canopy Insects ............................. 253
15.3 Interactions Between Insects and Micro-organisms .. 257
15.4 Biotic Interactions and Throughfall Chemistry ...... 258
15.5 Beyond the Canopy: Influences on Soil Processes and Ecosystems ..................................... 260
15.6 Synthesis and Future Prospects ....................... 263
15.7 Conclusions ............................................ 265
References ...................................................... 267
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Element Fluxes with Litterfall in Mature Stands of Norway Spruce and European Beech in Bavaria, South Germany</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>B. BERG and P. GERSTBERGER</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>271</td>
</tr>
<tr>
<td>16.2</td>
<td>Discussion</td>
<td>272</td>
</tr>
<tr>
<td>16.3</td>
<td>Concluding Remarks</td>
<td>277</td>
</tr>
<tr>
<td>References</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>The Role of Woody Roots in Water Uptake of Mature Spruce, Beech, and Oak Trees</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>J. LINDENMAIR, E. MATZNER, and R. ZIMMERMANN</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>279</td>
</tr>
<tr>
<td>17.2</td>
<td>Root Chamber Method</td>
<td>280</td>
</tr>
<tr>
<td>17.3</td>
<td>Water Uptake Rates of Coarse Roots for Different Tree Species</td>
<td>282</td>
</tr>
<tr>
<td>17.4</td>
<td>Time Course of Water Uptake for Spruce Roots in Relation to Climatic and Soil Physical Parameters and Xylem Sapflow Rates</td>
<td>284</td>
</tr>
<tr>
<td>17.5</td>
<td>Extrapolation from Root to Tree Scale</td>
<td>286</td>
</tr>
<tr>
<td>17.6</td>
<td>Conclusions</td>
<td>286</td>
</tr>
<tr>
<td>References</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Radial Growth of Norway Spruce [Picea abies (L.) Karst.] at the Coulissenhieb Site in Relation to Environmental Conditions and Comparison with Sites in the Fichtelgebirge and Erzgebirge</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>C. DITTMAR and W. ELLING</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>291</td>
</tr>
<tr>
<td>18.2</td>
<td>Status and Radial Growth of Norway Spruce at the Coulissenhieb Site</td>
<td>294</td>
</tr>
<tr>
<td>18.3</td>
<td>Growth Influences and Their Temporal and Regional Variations</td>
<td>297</td>
</tr>
<tr>
<td>18.4</td>
<td>Conclusions</td>
<td>307</td>
</tr>
<tr>
<td>References</td>
<td>308</td>
<td></td>
</tr>
</tbody>
</table>
# Part IV Soil Response

## 19 Environmental Controls on Concentrations and Fluxes of Dissolved Organic Matter in the Forest Floor and in Soil Solution

K. Kalbitz, T. Zuber, J.-H. Park, and E. Matzner

19.1 Introduction ................................................. 315
19.2 Experimental Design and Sampling ...................... 317
19.3 Analysis, Calculations and Statistics .................... 318
19.4 Long-term DOC and DON Concentrations and Fluxes at a Coniferous and a Deciduous Site .......... 319
19.5 Environmental Controls on DOM Dynamics ............. 326
19.6 Summary and Conclusions ................................. 333
References ....................................................... 334

## 20 Response of Soil Solution Chemistry and Solute Fluxes to Changing Deposition Rates

E. Matzner, T. Zuber, and G. Lischeid

20.1 Introduction .................................................. 339
20.2 Development of Soil Solution Chemistry ................ 340
20.3 Development of Element Fluxes with Soil Solution ...... 345
20.4 Element Budgets of the Soil ............................... 348
20.5 General Discussion ......................................... 354
20.6 Conclusions .................................................. 357
References ....................................................... 358

## 21 Sequestration Rates for C and N in Soil Organic Matter at Four N-Polluted Temperate Forest Stands

B. Berg

21.1 Introduction .................................................. 361
21.2 Sequestration of Carbon in SOM Under Growing Stands of Norway Spruce and European Beech – A Model Validation .................................................. 364
21.3 Sequestration Rates of Carbon in SOM at the Sites Coulissenhieb and Steinkreuz ............ 368
21.4 Sequestration of Nitrogen in SOM Under Growing Stands of Norway Spruce and European Beech at the Site Solling – A Model Validation .................................................. 369
21.5 How Much Can the Model Explain the N Sequestration? – A Validation ................................................. 371
21.6 Sequestration Rates of Nitrogen in SOM in a Norway Spruce Forest at the Sites Coulissenhieb and Steinkreuz ........ 372
21.7 The Missing C and N Fractions – Can They Be Explained? . 372
21.8 How Stable Are the Long-Term Stored C and N Fractions in SOM? ...................................................... 373
21.9 Concluding Remarks ............................................ 374
References ................................................................... 375

22 Riparian Zones in a Forested Catchment: Hot Spots for Microbial Reductive Processes .................................... 377
K. Küsel and C. Alewell

22.1 Introduction ............................................................. 377
22.2 Site Description of Wetland Sites ................................ 378
22.3 Sequential Microbial Reductive Processes in Soils: Theoretical Considerations and the Reality in the Lehstenbach Catchment ......................................................... 380
22.4 Wetlands of the Lehstenbach Catchment as a Sink for Anthropogenic Nitrate ........................................... 383
22.5 Wetlands of the Lehstenbach Catchment as a Sink for Anthropogenic Sulfate ............................................. 384
22.6 Ecophysiology and Phylogenetic Diversity of Sulfate-Reducing Prokaryotes in Fens of the Lehstenbach Catchment .......................................................... 387
22.7 Competing Anaerobic Microbial Processes in Fens of the Lehstenbach Catchment ........................................ 388
22.8 Conclusions ........................................................... 390
References ................................................................... 391

Part V Catchment Response

23 Dynamics of Runoff and Runoff Chemistry at the Lehstenbach and Steinkreuz Catchment ......................... 399
G. Lischeid, H. Lange, K. Moritz, and H. Büttcher

23.1 Introduction ............................................................. 399
23.2 Statistical Analysis ................................................... 401
23.3 Discharge ............................................................... 405
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4</td>
<td>Solute Concentration</td>
<td>412</td>
</tr>
<tr>
<td>23.5</td>
<td>Conclusions</td>
<td>432</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>433</td>
</tr>
<tr>
<td>24</td>
<td>Trends in the Input–Output Relations:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Catchment Budgets</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>G. Lischeid, C. Alewell, K. Moritz, and J. Bittersohl</td>
<td></td>
</tr>
<tr>
<td>24.1</td>
<td>Introduction</td>
<td>437</td>
</tr>
<tr>
<td>24.2</td>
<td>Determination of Catchment Budgets</td>
<td>438</td>
</tr>
<tr>
<td>24.3</td>
<td>Output Fluxes Via Runoff</td>
<td>441</td>
</tr>
<tr>
<td>24.4</td>
<td>Mean Budgets</td>
<td>444</td>
</tr>
<tr>
<td>24.5</td>
<td>Changing Catchment Behaviour</td>
<td>447</td>
</tr>
<tr>
<td>24.6</td>
<td>Conclusions: Long-Term Implications</td>
<td>451</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>452</td>
</tr>
<tr>
<td>Part VI</td>
<td>Synthesis</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Biogeochemistry of Two Forested Catchments in a Changing Environment: A Synthesis</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>E. Matzner, B. Köstner, and G. Lischeid</td>
<td></td>
</tr>
<tr>
<td>25.1</td>
<td>The Changing Environment</td>
<td>457</td>
</tr>
<tr>
<td>25.2</td>
<td>Recovery from Acidification of Soils and Waters</td>
<td>459</td>
</tr>
<tr>
<td>25.3</td>
<td>Fate of Deposited Nitrogen</td>
<td>464</td>
</tr>
<tr>
<td>25.4</td>
<td>Carbon Sequestration</td>
<td>469</td>
</tr>
<tr>
<td>25.5</td>
<td>Water Fluxes Between Vegetation and Environment</td>
<td>471</td>
</tr>
<tr>
<td>25.6</td>
<td>Atmospheric Controls on Processes and Fluxes</td>
<td>476</td>
</tr>
<tr>
<td>25.7</td>
<td>Criteria of Sustainable Use</td>
<td>479</td>
</tr>
<tr>
<td>25.8</td>
<td>Overall Conclusions</td>
<td>481</td>
</tr>
<tr>
<td>25.9</td>
<td>Outlook</td>
<td>483</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>484</td>
</tr>
</tbody>
</table>

Subject Index                                                                                           491
Biogeochemistry of Forested Catchments in a Changing Environment
A German Case Study
Matzner, E. (Ed.)
2004, XXII, 500 p., Hardcover
ISBN: 978-3-540-20973-7