Contents

Part I Introduction

1 Introduction ... 3
 E. Matzner
 1.1 General Introduction ... 3
 1.2 Goals and Approaches of BITÖK Research 4
 1.3 Scope of the Synthesis and Problems Addressed 5
 References .. 10

2 The Lehstenbach and Steinkreuz Catchments
 in NE Bavaria, Germany .. 15
 P. Gerstberger, T. Foken, and K. Kalbitz
 2.1 The Lehstenbach Catchment
 in the Fichtelgebirge Mountains 15
 2.2 The Steinkreuz Catchment in the Steigerwald Hillsides .. 30
 References .. 40

Part II The Changing Environment

3 Trace Gases and Particles in the Atmospheric Boundary Layer
 at the Waldstein Site: Present State and Historic Trends 45
 O. Klemm
 3.1 Introduction ... 45
 3.2 Sites .. 46
 3.3 Trends in Sulfur Dioxide 46
 3.4 Trends in Nitrogen Gases 48
3.5 Trends in Ozone 50
3.6 Trends in Fog Chemistry 53
3.7 Aerosol Particles 54
3.8 Conclusions 56
References 57

4 Climate Change in the Lehstenbach Region ... 59
 T. Foken

4.1 Introduction 59
4.2 Change of Climatological Elements 59
4.3 Consequences of Climate Change 65
4.4 Conclusions 65
References 66

Part III Vegetation Response

5 Atmospheric and Structural Controls on Carbon and
 Water Relations in Mixed-Forest Stands of Beech and Oak 69
 B. Köstner, M. Schmidt, E. Falge, S. Fleck,
 and J.D. Tenhunen

5.1 Introduction 69
5.2 The Study Sites Steinkreuz and Großebene 71
5.3 Analysis of Canopy Transpiration and Conductance
 by Means of Sap Flow Measurements 76
5.4 Analysis of Carbon and Water Relations
 by Structural Variation in Model Systems 87
5.5 Conclusions 90
References 93

6 Impacts of Canopy Internal Gradients on Carbon
 and Water Exchange of Beech and Oak Trees 99
 S. Fleck, M. Schmidt, B. Köstner, W. Faltin,
 and J.D. Tenhunen

6.1 Introduction 99
6.2 Crown Structures of Mature Beech and Oak Trees 104
6.3 Leaf Properties 109
6.4 A Modelling Study on the Gas-Exchange of Leaf Clouds .. 115
| Contents |
|------------------|------------------|
| 6.5 | Discussion | 121 |
| 6.6 | Conclusions | 124 |
| References | 124 |

<table>
<thead>
<tr>
<th>7</th>
<th>Soil CO$_2$ Fluxes in Spruce Forests – Temporal and Spatial Variation, and Environmental Controls</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>127</td>
</tr>
<tr>
<td>7.2</td>
<td>Measuring Sites</td>
<td>128</td>
</tr>
<tr>
<td>7.3</td>
<td>Temporal Variation of Soil CO$_2$ Efflux</td>
<td>129</td>
</tr>
<tr>
<td>7.4</td>
<td>Within- and Between-Stand Variation of Soil CO$_2$ Efflux</td>
<td>135</td>
</tr>
<tr>
<td>7.5</td>
<td>The Annual C Budget of the Forest Soil</td>
<td>138</td>
</tr>
<tr>
<td>7.6</td>
<td>Conclusions</td>
<td>139</td>
</tr>
<tr>
<td>References</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Carbon Budget of a Spruce Forest Ecosystem</th>
<th>143</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>143</td>
</tr>
<tr>
<td>8.2</td>
<td>Measuring Site and Quality Control</td>
<td>144</td>
</tr>
<tr>
<td>8.3</td>
<td>Calculation of Fluxes</td>
<td>146</td>
</tr>
<tr>
<td>8.4</td>
<td>Results and Discussion</td>
<td>150</td>
</tr>
<tr>
<td>8.5</td>
<td>Conclusions</td>
<td>156</td>
</tr>
<tr>
<td>References</td>
<td>157</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Structure of Carbon Dioxide Exchange Processes Above a Spruce Forest</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction and 13C Signatures</td>
<td>161</td>
</tr>
<tr>
<td>9.2</td>
<td>Balances of 13C and CO$_2$</td>
<td>163</td>
</tr>
<tr>
<td>9.3</td>
<td>Hyperbolic Relaxed Eddy Accumulation (HREA) as a Relevant Measuring Method</td>
<td>164</td>
</tr>
<tr>
<td>9.4</td>
<td>Results</td>
<td>168</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusions</td>
<td>173</td>
</tr>
<tr>
<td>References</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>10</td>
<td>Modeling the Vegetation Atmospheric Exchange with a Transilient Model</td>
<td>177</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>177</td>
</tr>
<tr>
<td>10.2</td>
<td>Short Description of FLAME</td>
<td>178</td>
</tr>
<tr>
<td>10.3</td>
<td>Model Initialization for the Case Study</td>
<td>179</td>
</tr>
<tr>
<td>10.4</td>
<td>Comparison of Measured and Modeled Fluxes</td>
<td>183</td>
</tr>
<tr>
<td>10.5</td>
<td>Conclusions</td>
<td>187</td>
</tr>
</tbody>
</table>

| References | 189 |

11	Fog Deposition and its Role in Biogeochemical Cycles of Nutrients and Pollutants	191
11.1	Introduction	191
11.2	Site	192
11.3	Fog Chemistry	193
11.4	Direct Measurement of Fog Deposition	194
11.5	Fog Deposition Model	195
11.6	Discussion	199
11.7	Conclusions	200

| References | 201 |

12	Turbulent Deposition of Ozone to a Mountainous Forest Ecosystem	203
12.1	Introduction	203
12.2	Site	204
12.3	Experimental Setup	204
12.4	Big Leaf Model	205
12.5	Modelled Fluxes	206
12.6	Deposition to the Forest Canopy	208
12.7	Deposition to the Forest Ground	209
12.8	Synthesis and Conclusions	211

| References | 213 |
16 Element Fluxes with Litterfall in Mature Stands of Norway Spruce and European Beech in Bavaria, South Germany . . 271
B. BERG and P. GERSTBERGER

16.1 Introduction .. 271
16.2 Discussion .. 272
16.3 Concluding Remarks .. 277
References ... 277

17 The Role of Woody Roots in Water Uptake of Mature Spruce, Beech, and Oak Trees .. 279
J. LINDENMAIR, E. MATZNER, and R. ZIMMERMANN

17.1 Introduction .. 279
17.2 Root Chamber Method .. 280
17.3 Water Uptake Rates of Coarse Roots for Different Tree Species .. 282
17.4 Time Course of Water Uptake for Spruce Roots in Relation to Climatic and Soil Physical Parameters and Xylem Sapflow Rates .. 284
17.5 Extrapolation from Root to Tree Scale 286
17.6 Conclusions .. 286
References ... 287

18 Radial Growth of Norway Spruce [Picea abies (L.) Karst.] at the Coulissenhieb Site in Relation to Environmental Conditions and Comparison with Sites in the Fichtelgebirge and Erzgebirge .. 291
C. DITTMAR and W. ELLING

18.1 Introduction .. 291
18.2 Status and Radial Growth of Norway Spruce at the Coulissenhieb Site .. 294
18.3 Growth Influences and Their Temporal and Regional Variations .. 297
18.4 Conclusions .. 307
References ... 308
Part IV Soil Response

19 Environmental Controls on Concentrations and Fluxes of Dissolved Organic Matter in the Forest Floor and in Soil Solution ... 315
K. Kalbitz, T. Zuber, J.-H. Park, and E. Matzner

19.1 Introduction ... 315
19.2 Experimental Design and Sampling 317
19.3 Analysis, Calculations and Statistics 318
19.4 Long-term DOC and DON Concentrations and Fluxes at a Coniferous and a Deciduous Site 319
19.5 Environmental Controls on DOM Dynamics 326
19.6 Summary and Conclusions 333
References .. 334

20 Response of Soil Solution Chemistry and Solute Fluxes to Changing Deposition Rates 339
E. Matzner, T. Zuber, and G. Lischeid

20.1 Introduction ... 339
20.2 Development of Soil Solution Chemistry 340
20.3 Development of Element Fluxes with Soil Solution 345
20.4 Element Budgets of the Soil 348
20.5 General Discussion 354
20.6 Conclusions ... 357
References .. 358

21 Sequestration Rates for C and N in Soil Organic Matter at Four N-Polluted Temperate Forest Stands 361
B. Berg

21.1 Introduction ... 361
21.2 Sequestration of Carbon in SOM Under Growing Stands of Norway Spruce and European Beech – A Model Validation ... 364
21.3 Sequestration Rates of Carbon in SOM at the Sites Coulissenhieb and Steinkreuz 368
21.4 Sequestration of Nitrogen in SOM Under Growing Stands of Norway Spruce and European Beech at the Site Solling – A Model Validation ... 369
21.5 How Much Can the Model Explain the N Sequestration? – A Validation ... 371
21.6 Sequestration Rates of Nitrogen in SOM in a Norway Spruce Forest at the Sites Coulissenhieb and Steinkreuz 372
21.7 The Missing C and N Fractions – Can They Be Explained? 372
21.8 How Stable Are the Long-Term Stored C and N Fractions in SOM? ... 373
21.9 Concluding Remarks ... 374
References ... 375

22 Riparian Zones in a Forested Catchment: Hot Spots for Microbial Reductive Processes ... 377
K. Küsel and C. Alewell

22.1 Introduction .. 377
22.2 Site Description of Wetland Sites ... 378
22.3 Sequential Microbial Reductive Processes in Soils: Theoretical Considerations and the Reality in the Lehstenbach Catchment .. 380
22.4 Wetlands of the Lehstenbach Catchment as a Sink for Anthropogenic Nitrate ... 383
22.5 Wetlands of the Lehstenbach Catchment as a Sink for Anthropogenic Sulfate ... 384
22.6 Ecophysiology and Phylogenetic Diversity of Sulfate-Reducing Prokaryotes in Fens of the Lehstenbach Catchment .. 387
22.7 Competing Anaerobic Microbial Processes in Fens of the Lehstenbach Catchment ... 388
22.8 Conclusions ... 390
References ... 391

Part V Catchment Response

23 Dynamics of Runoff and Runoff Chemistry at the Lehstenbach and Steinkreuz Catchment ... 399
G. Lischeid, H. Lange, K. Moritz, and H. Büttcher

23.1 Introduction ... 399
23.2 Statistical Analysis ... 401
23.3 Discharge .. 405
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.4</td>
<td>Solute Concentration</td>
<td>412</td>
</tr>
<tr>
<td>23.5</td>
<td>Conclusions</td>
<td>432</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>433</td>
</tr>
</tbody>
</table>

24 Trends in the Input–Output Relations: The Catchment Budgets

G. Lischeid, C. Alewell, K. Moritz, and J. Bittersohl

- **24.1** Introduction | 437
- **24.2** Determination of Catchment Budgets | 438
- **24.3** Output Fluxes Via Runoff | 441
- **24.4** Mean Budgets | 444
- **24.5** Changing Catchment Behaviour | 447
- **24.6** Conclusions: Long-Term Implications | 451

References | 452

Part VI Synthesis

25 Biogeochemistry of Two Forested Catchments in a Changing Environment: A Synthesis

E. Matzner, B. Köstner, and G. Lischeid

- **25.1** The Changing Environment | 457
- **25.2** Recovery from Acidification of Soils and Waters | 459
- **25.3** Fate of Deposited Nitrogen | 464
- **25.4** Carbon Sequestration | 469
- **25.5** Water Fluxes Between Vegetation and Environment | 471
- **25.6** Atmospheric Controls on Processes and Fluxes | 476
- **25.7** Criteria of Sustainable Use | 479
- **25.8** Overall Conclusions | 481
- **25.9** Outlook | 483

References | 484

Subject Index | 491
Biogeochemistry of Forested Catchments in a Changing Environment
A German Case Study
Matzner, E. (Ed.)
2004, XXII, 500 p., Hardcover
ISBN: 978-3-540-20973-7