Contents

Chapter 1: An Introduction to Computational Intelligence

1.1 Artificial Intelligence- a Brief Review 1
1.2 Pitfalls of the Traditional AI 3
1.3 Computational Intelligence- an Emergence of a New Computational Paradigm 4
1.4 Computational Intelligence- a Formal Definition 7
1.5 Soft Computing- Definitions 8
1.6 Fundamental Elements of Soft Computing 9
 1.6.1 The Logic of Fuzzy Sets 9
 1.6.2 Computational Models of Neural Nets 10
 1.6.3 Genetic Algorithms 17
 1.6.4 Belief Networks 20
1.7 Computational Learning Theory 23
1.8 Synergism in Soft Computing 25
 1.8.1 Neuro-Fuzzy Synergism 26
 1.8.2 Neuro-GA Synergism 26
 1.8.3 Fuzzy-GA Synergism 26
 1.8.4 Neuro-Belief Network Synergism 26
 1.8.5 GA-Belief Network Synergism 27
 1.8.6 Neuro-Fuzzy-GA Synergism 27
1.9 Conclusions 27
 Exercise 27
 References 29

Chapter 2: Fuzzy Sets and Relations

2.1 Conventional Sets 37
2.2 Fuzzy Sets 38
2.3 Membership Functions 40
2.4 Continuous and Discrete Membership Functions 42
2.5 Typical Membership Functions 43
 2.5.1 The γ-Function 43
 2.5.2 The s-Function 44
 2.5.3 The L-Function 45
 2.5.4 The Triangular Membership Function 46
 2.5.5 The Π-Function 47
 2.5.6 The Gaussian Membership Function 47
2.6 Operations on Fuzzy Sets 48
 2.6.1 Fuzzy T-Norm 48
 2.6.2 Fuzzy S-Norm 49
 2.6.3 Fuzzy Complement 50
2.7 Basic Concepts Associated with Fuzzy Sets 50
2.8 Extension Principle of Fuzzy Sets 52
Chapter 3: Fuzzy Logic and Approximate Reasoning

3.1 Production Systems 67
3.2 Conflict Resolution in Production Systems 69
3.3 Drawbacks of Traditional Production Systems 69
3.4 Fuzzy Implication Rules 70
3.5 Fuzzy Implication Relations 71
3.6 Fuzzy Logic 73
 3.6.1 Typical Propositional Inference Rules 73
 3.6.2 Fuzzy Extension of the Inference Rules 74
3.7 The Composition Rule of Inference 75
 3.7.1 Computing Fuzzy Inferences in GMP 75
 3.7.2 Computing Fuzzy Inferences Using GMT 78
 3.7.3 Computing Fuzzy Inferences Using GHS 79
3.8 Approximate Reasoning with Multiple Antecedent Clauses 80
3.9 Approximate Reasoning with Multiple Rules 83
3.10 Scope of Parallelism in Approximate Reasoning Using
 Mamdani Implication Function 86
3.11 Realization of Fuzzy Inference Engine on VLSI Architecture 87
3.12 Approximate Reasoning with Multiple Rules Each with
 Multiple Antecedent Clauses 89
3.13 Fuzzy Abductive Reasoning 90
3.14 Conclusions 93
 Exercise 93
 References 95

Chapter 4: Fuzzy Logic in Process Control

4.1 Process Control 97
4.2 Advantages of Fuzzy Control 99
4.3 Typical Fuzzy Control Systems 99
4.4 Architecture of Typical Fuzzy control Systems 101
4.5 Reasoning in Mamdani Type Fuzzy Control Systems 101
4.6 Reasoning in T-S Fuzzy Control Systems 106
4.7 Stability Analysis of Dynamic Systems Using
 Lyapunov Energy Functions 109
4.8 Stability Analysis of T-S Fuzzy Systems 110
4.9 Application in Power Control of a Nuclear Reactor 114
Chapter 5: Fuzzy Pattern Recognition

5.1 Introduction 125
5.2 The Fuzzy C-Means Clustering Algorithm 127
5.3 Image Segmentation Using Fuzzy C-Means Clustering Algorithm 132
5.4 Conclusions 136
Exercise 136
References 137

Chapter 6: Fuzzy Databases and Possibilistic Reasoning

6.1 Introduction to Relational Database Systems 139
 6.1.1 The Relational Model 140
6.2 Issues in Relational database Design 143
 6.2.1 Lossless Join Decomposition 143
 6.2.2 Functional Dependency Preservation 144
6.3 Possibility Distribution and Fuzzy Sets 146
6.4 Fuzziness in Relational Models 147
 6.4.1 Type-1 Fuzzy Relational Data Model 147
 6.4.2 Type-2 Fuzzy Relational Data Model 149
6.5 Fuzzy Relational Operators 152
 6.5.1 Projection of Fuzzy Relations 152
 6.5.2 Cylindrical Extension of Fuzzy Relations 153
 6.5.3 Natural Join of Fuzzy Relations 154
 6.5.4 Lossy Fuzzy Joins 155
6.6 Fuzzy Integrity Constraints 155
 6.6.1 Conjunction of Fuzzy Propositions 156
 6.6.2 The Modifier Rule 157
 6.6.3 Possibility Distribution for Conditional Fuzzy Propositions 158
6.7 Fuzzy Functional Dependency 158
 6.7.1 Equality as a Fuzzy Relation 158
 6.7.2 Representing Functional Dependency Using Equality Relation 160
6.8 Fuzzy Lossless Join 161
6.9 Design of Fuzzy Relational Databases 162
6.10 Conclusions 162
 Exercise 163
 References 165
Chapter 7: Introduction to Machine Learning Using Neural Nets

7.1 Biological Neural Networks 167
7.2 Artificial Neural Networks 169
7.3 Principles of Learning in a Neural Net 170
7.4 Stability and Convergence 179
7.5 Three Important Theorems for Stability Analysis of Neural Dynamics 180
7.6 Conclusions 193
 Exercise 184
 References 194

Chapter 8: Supervised Neural Learning Algorithms

8.1 Introduction 197
8.2 McCulloch-Pitts Model 198
8.3 The Perceptron Learning Model 201
 8.3.1 Linear Classification by Perceptrons 203
 8.3.2 Multilayered Perceptron Classifier 207
8.4 Widrow-Hoff’s ADALINE Model 209
8.5 The Back-propagation Learning Algorithm 217
8.6 The Radial Basis Function Neural Net 223
8.7 Modular Neural Nets 225
8.8 Conclusions 230
 Exercise 230
 References 233

Chapter 9: Unsupervised Neural Learning Algorithms

9.1 Introduction 237
9.2 Recurrent Neural Nets 238
 9.2.1 Discrete Hopfield Network 239
 9.2.2 Continuous Hopfield Neural Net 241
 9.2.3 A Near-Equilibrium Consideration for Classification by Continuous Hopfield Nets 245
 9.2.4 Optimization Using Hopfield (Continuous) Neural Nets 246
 9.2.5 Application of Hopfield Neural Nets in Engineering Problems 248
 9.2.6 Boltzman Machines 252
9.3 Bi-directional Associative Memory 253
9.4 Adaptive Resonance Theory 256
9.5 Fuzzy Associative Memory 260
9.6 Discussions 262
Chapter 10: Competitive Learning Using Neural Nets

10.1 Introduction 267
10.2 Two Layered Recurrent Networks for Competitive Learning 270
10.3 Components of a Competitive Learning Network 272
 10.3.1 The Pre-Processing Layer 272
 10.3.2 The Instar Connectivity from Neurons of the Input to the Output Layer 273
 10.3.3 Competitive Learning in the Output Layer 274
10.4 Hebbian Learning in the Competitive Layer 276
10.5 Analysis of Pattern Clustering Network 279
10.6 Principal Component Analysis 281
10.7 Self-Organizing Feature Map 282
10.8 Application in Face Recognition 284
10.9 Conclusions 289
 Exercise 289
 References 292

Chapter 11: Neuro-dynamic Programming by Reinforcement Learning

11.1 Introduction 295
11.2 Formulation of the Reinforcement Learning Paradigm 298
11.3 Q-Learning 302
11.4 Convergence of Q-Learning Algorithm 307
11.5 Nondeterministic Rewards and Actions 308
11.6 Temporal Difference Learning 310
11.7 Neural Reinforcement Learning 311
11.8 Multi-Agent Reinforcement Learning 315
11.9 Conclusions 317
 Exercise 318
 References 321

Chapter 12: Evolutionary Computing Algorithms

12.1 Introduction 323
12.2 Genetic Algorithm: How does it work? 324
12.3 Deterministic Explanation of Holland’s Observation 331
12.4 Stochastic Explanation of GA 332
12.5 The Markov Model for Convergence Analysis 335
12.6 Application of GA in Optimization Problems 339
12.7 Application of GA in Machine Learning 341
 12.7.1 GA as an Alternative to Back-propagation Learning 342
Chapter 12: GA and its Applications

12.7.2 Adaptation of the Learning Rule/Control Law by GA 342
12.8 Application of GA in Intelligent Search 345
 12.8.1 Navigational Planning of Robots 345
12.9 Genetic Programming 346
12.10 Conclusions 348
 Exercise 349
 References 349

Chapter 13: Belief Calculus and Probabilistic Reasoning

13.1 Introduction 353
13.2 Elements of Probability Theory 354
 13.2.1 Bayes’ Law on Conditional Probability 356
13.3 Belief Propagation on a Causal Tree 361
13.4 Pearl’s Belief Propagation Scheme on a Polytree 369
13.5 Dempster-Shafer Theory for Uncertainty Management 372
13.6 Conclusions 377
 Exercise 377
 References 391

Chapter 14: Reasoning in Expert Systems Using Fuzzy Petri Nets

14.1 Introduction 394
14.2 Imprecision Management in an Acyclic FPN 396
 14.2.1 Formal Definitions and the Proposed Model 396
 14.2.2 Proposed Model for Belief Propagation 396
 14.2.3 Proposed Algorithm for Belief Propagation 398
14.3 Imprecision and Inconsistency Management in a Cyclic FPN 404
 14.3.1 Proposed Model for Belief Revision 404
 14.3.2 Stability Analysis of the Belief Revision Model 405
 14.3.3 Detection and Elimination of Limit cycles 411
 14.3.4 Nonmonotonic Reasoning in an FPN 414
14.4 Conclusions 415
 Exercise 419
 References 419

Chapter 15: Image Matching Using Fuzzy Moment Descriptors

15.1 Introduction 423
15.2 Image Features and their Membership Distributions 425
 15.2.1 Fuzzy Membership Distributions 426
 15.2.2 Fuzzy Production Rules 428
15.3 Fuzzy Moment Descriptors 429
Chapter 15: Image Matching Algorithms

15.4 Image Matching Algorithm 431
15.5 Rotation and Size Invariant Matching 433
15.6 Noise Insensitive Matching 433
15.7 Computer Simulation 434
15.8 Implication of the Results 435
15.9 Template Matching Using Interleaved Search 435
15.10 Computer Simulation of Template Matching 439
15.11 Human Mood Detection from Facial Expressions 440
 15.11.1 Image Segmentation and Localization of Facial Components 441
 15.11.2 Facial Extracts and their Measurements for Mood Analysis 442
15.12 Conclusions 446
 Exercise 447
 References 450

Chapter 16: Behavioral Synergism of Soft Computing Tools

16.1 Introduction 453
16.2 Neuro-Fuzzy Synergism 455
 16.2.1 Weakly Coupled Neuro-Fuzzy Systems 455
 16.2.2 Tightly Coupled Neuro-Fuzzy Systems 456
16.3 Fuzzy-GA Synergism 459
16.4 Neuro-GA Synergism 460
 16.4.1 Adaptation of a Neural Learning Algorithm Using GA 460
16.5 GA-Belief Network Synergism 462
16.6 A Case Study of Synergism of 2 Neural Topology and GA 462
 16.6.1 The Problem 462
 16.6.2 Clustering by TASONN 463
 16.6.3 Continuous Hopfield Net- A Review 463
 16.6.4 Perception-to-Action Transformation 464
 16.6.5 Optimization of the Energy Function Using GA 465
 16.6.6 Experimental Details 466
16.7 Conclusions and Future Directions 468
 Exercise 469
 References 475

Chapter 17: Object Recognition from Gray Images Using Fuzzy ADALINE Neurons

17.1 Introduction 477
17.2 Proposed Model of ADALINE 480
17.3 Stability Analysis for Convergence of the ADALINE Model 482
17.4 Training of the Proposed Neural Net 484
 17.4.1 Training Algorithm of ADALINES 484
 17.4.2 Training of the Neural Net 487
Chapter 17: Training with Multiple Input-Output Patterns

17.4.3 Training with Multiple Input-Output Patterns 488

17.5 Translation Rotation and Size Invariant Gray Pattern Recognition 490

17.5.1 Design of Translational Invariance Network 491
17.5.2 Design of Rotational Invariance Network 492
17.5.3 Design of Size Invariance Network 493

17.6 Conclusions 493

Exercise 494
References 495

Chapter 18: Distributed Machine Learning Using Fuzzy Cognitive Maps

18.1 Introduction 497
18.2 Axelrod’s Cognitive Maps 498
18.3 Kosko’s Model 500
18.4 Kosko’s Extended Model 503
18.5 Adaptive FCMs 504
18.6 Zhang, Chen and Bezdek’s Model 505
18.7 Pal and Konar’s Model 507
18.8 Conclusions 513

Exercise 513
References 517

Chapter 19: Machine Learning Using Fuzzy Petri Nets

19.1 Introduction 521
19.2 The Proposed Model for Cognitive Reasoning 523
19.2.1 Encoding of Weights 524
19.2.2 The recall Model 524
19.3 State-Space Formulation 526
19.3.1 State-Space Model for Belief Updating 527
19.3.2 State-Space Model for FTT Updating of Transitions 527
19.3.3 State-Space Model for Weights 528
19.4 Stability Analysis of the Cognitive Model 528
19.5 Computer Simulation 532
19.6 Implication of the Results 535
19.7 Knowledge Refinement by Hebbian Learning 535
19.7.1 The Encoding Model 535
19.7.2 The Recall/ Reasoning Model 537
19.7.3 Case Study by Computer Simulation 537
19.7.4 Implication of the Results 542
19.8 Conclusions 542

Exercise 544
References 545
Chapter 20: Computational Intelligence in Telecommunication Networks

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1 Introduction</td>
<td>547</td>
</tr>
<tr>
<td>20.2 Network Routing Using Genetic Algorithms</td>
<td>549</td>
</tr>
<tr>
<td>20.2.1 Path-Genetic Operators</td>
<td>551</td>
</tr>
<tr>
<td>20.2.2 Fitness Evaluation</td>
<td>553</td>
</tr>
<tr>
<td>20.2.3 The Genetic Based Routing Algorithm</td>
<td>553</td>
</tr>
<tr>
<td>20.3 Computational Intelligence in Network Congestion Control</td>
<td>554</td>
</tr>
<tr>
<td>20.3.1 Fuzzy Congestion Controller</td>
<td>555</td>
</tr>
<tr>
<td>20.4 Computational Intelligence in Handling the Call Admission Control Problem</td>
<td>560</td>
</tr>
<tr>
<td>20.4.1 Call Admission Control Using Neural Networks</td>
<td>561</td>
</tr>
<tr>
<td>20.4.2 Input/Outputs of Neural Nets Used in Call Admission Control</td>
<td>562</td>
</tr>
<tr>
<td>20.5 Intelligent Traffic Control</td>
<td>565</td>
</tr>
<tr>
<td>20.6 Conclusions</td>
<td>566</td>
</tr>
<tr>
<td>Exercise</td>
<td>567</td>
</tr>
<tr>
<td>References</td>
<td>570</td>
</tr>
</tbody>
</table>

Chapter 21: Computational Intelligence in Mobile Robotics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1 Introduction</td>
<td>571</td>
</tr>
<tr>
<td>21.2 Path Planning of a Mobile Robot Using Neural Nets</td>
<td>573</td>
</tr>
<tr>
<td>21.2.1 Generation of Training Instances</td>
<td>574</td>
</tr>
<tr>
<td>21.2.2 Configuring the Neural Nets</td>
<td>580</td>
</tr>
<tr>
<td>21.2.3 Parameters Used for Performance Evaluation of the Neural Path-Planning Algorithms</td>
<td>582</td>
</tr>
<tr>
<td>21.2.4 Experimental Results- a Benchmark Analysis</td>
<td>584</td>
</tr>
<tr>
<td>21.2.5 Implication of the Results</td>
<td>589</td>
</tr>
<tr>
<td>21.3 Object Localization</td>
<td>589</td>
</tr>
<tr>
<td>21.4 Target Tracking and Interception by Mobile Robots Using Kalman Filtering</td>
<td>592</td>
</tr>
<tr>
<td>21.4.1 Measurements of the Input to Kalman Filter</td>
<td>595</td>
</tr>
<tr>
<td>21.4.2 Extended Kalman Filter- an Overview</td>
<td>596</td>
</tr>
<tr>
<td>21.4.3 Predicting Target Position Using Extended Kalman Filter</td>
<td>597</td>
</tr>
<tr>
<td>21.4.4 Use of the Back-propagation Neural Net</td>
<td>600</td>
</tr>
<tr>
<td>21.4.5 Experimental Results</td>
<td>600</td>
</tr>
<tr>
<td>21.5 Conclusions and Future Directions</td>
<td>601</td>
</tr>
<tr>
<td>Exercise</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 22: Emerging Areas of Computational Intelligence

22.1 Introduction 611
22.2 Artificial Life 613
 22.2.1 The Model of Artificial Fish Positions, Speed and Heading 613
 22.2.2 Repulsion, Attraction and Aligning 614
 22.2.3 Body Size and Form 616
22.3 Particle Swarm Optimization 617
 22.3.1 Particle Swarm Size 619
 22.3.2 The Split Swarm Algorithm 619
22.4 Artificial Immune Systems 620
 22.4.1 Biological Communication among Different Species of Antibodies 621
 22.4.2 A Simple Model of the Immune System 622
22.5 Fuzzy Chaos Theory 624
22.6 Rough Sets 627
 22.6.1 Rough-Fuzzy Sets 629
22.7 Granular Computing 630
 22.7.1 Rough Inclusion and Indiscernibility 632
 22.7.2 Classifier Design 632
22.8 Redefining Computational Intelligence 633
22.9 Summary 634
 Exercise 635
 References 640

Chapter 23: Research Problems for Graduate Thesis and Pre-Ph D Preparatory Courses

23.1 Problem 1: Computing Max-Min Inverse Fuzzy Relation 643
23.2 An Outline to the Solution of Problem 1 644
23.3 Tutorial Assignment for Graduate Students 645
23.4 Problem 2: Reasoning with Fuzzy Petri Nets 646
 23.4.1 Tutorial Problems on Fuzzy Petri Nets 646
 23.4.2 Research Problems on Fuzzy Petri Nets 647
23.5 Problem 3: Spoken Word Reconstruction from Lip Stylus Sequences 649
23.6 Problem 4: Fuzzy State Equations and stability Analysis 650
23.7 An Outline to the Solution of Problem 4 651
23.8 Graduate Students’ Assignments on Stability of Fuzzy State Equations 652
23.9 Problem 5: Fuzzy Data Mining 652
23.10 An approach to the Solution of Problem 5 653
23.11 Graduate Assignments on Fuzzy Data Mining 655
23.12 Problem 6: Selected Items in Signal Processing and
Communication Engineering 655
 23.12.1 System Modeling 656
 23.12.2 Non-linear Prediction Problem 657
 23.12.3 Inverse Modeling 658
 23.12.4 Adaptive Channel Equalization 659
23.13 Problem 7: Handling Large Training Instances Using Back-Propagation-RBF Synergism 660
23.14 Problem 8: Macro Cell Placement and Routing in VLSI Design Using Genetic Algorithms 662
23.15 A Possible Solution to Macro Cell Placement and Routing 663
23.16 Problem 9: Drug Classification Problem Using Artificial Neural Networks 664
 References 667

Appendix A: Sample Run of Programs Included in the CD

A.1 Detection of Mouth Opening of a Person from his/ her Facial Image 669
A.2 A Program for Image Matching Using Fuzzy Moment Descriptors 674
A.3 GA in Path Planning of a Mobile Robot 676
A.4 The FPNreas1 Program 677
A.5 The FPNreas2 Program 683
A.6 The FPNtreas3 Program 684
A.7 Fuzzy Chaos Program 686
A.8 The New_Petri3 Program to Study Controllability on FPN 688

Appendix B: Evolutionary Algorithms of Current Interest

B.1 Ant Colony Systems: an Overview 691
 B.1.1 The ACO Algorithm 693
 B.1.2 Solving the classical TSP Problem by ACO 693
 B.1.3 Application Domain of ACO 695
B.2 Differential Evolution 696
 B.2.1 Outline of the Algorithm 696
 B.2.2 Application Domain of DE and Recent Research 698
 References 698

Index 701
About the Author 706
Computational Intelligence
Principles, Techniques and Applications
Konar, A.
2005, XXIV, 708 p., Hardcover
ISBN: 978-3-540-20898-3