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A Brief Overview

Coq [37] is a proof assistant with which students, researchers, or engineers
can express specifications and develop programs that fulfill these specifica-
tions. This tool is well adapted to develop programs for which absolute trust
is required: for example, in telecommunication, transportation, energy, bank-
ing, etc. In these domains the need for programs that rigorously conform to
specifications justifies the effort required to verify these programs formally.
We shall see in this book how a proof assistant like Coq can make this work
easier.

The Coq system is not only interesting to develop safe programs. It is also
a system with which mathematicians can develop proofs in a very expressive
logic, often called higher-order logic. These proofs are built in an interactive
manner with the aid of automatic search tools when possible. The application
domains are very numerous, for instance logic, automata theory, computa-
tional linguistics and algorithmics (see [1]).

This system can also be used as a logical framework to give the axioms of
new logics and to develop proofs in these logics. For instance, it can be used
to implement reasoning systems for modal logics, temporal logics, resource-
oriented logics, or reasoning systems on imperative programs.

The Coq system belongs to a large family of computer-based tools whose
purpose is to help in proving theorems, namely Automath [34], Nqthm [17, 18],
Mizar [83], LCF [48], Nuprl [25], Isabelle [73], Lego [60], HOL [47], PVS [68],
and ACL2 [55], which are other renowned members of this family. A remark-
able characteristic of Coq is the possibility to generate certified programs from
the proofs and, more recently, certified modules.

In this introductory chapter, we want to present informally the main fea-
tures of Coq . Rigorous definitions and precise notation are given in later chap-
ters and we only use notation taken from usual mathematical practice or from
programming languages.
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1.1 Expressions, Types, and Functions

The specification language of Coq , also called Gallina , makes it possible to
represent the usual types and programs of programming languages.

Expressions in this language are formed with constants and identifiers,
following a few construction rules. Every expression has a type; the type for
an identifier is usually given by a declaration and the rules that make it
possible to form combined expressions come with typing rules that express
the links between the type of the parts and the type of the whole expression.

For instance, let us consider the type Z of integers, corresponding to the
set Z. The constant −6 has this type and if one declares a variable z with type
Z, the expression −6z also has type Z. On the other hand, the constant true
has type bool and the expression “true×−6” is not a well-formed expression.

We can find a large variety of types in the Gallina language: besides Z and
bool, we make intensive use of the type nat of natural numbers, considered
as the smallest type containing the constant 0 and the values obtained when
calling the successor function. Type operators also make it possible to con-
struct the type A × B of pairs of values (a, b) where a has type A and b has
type B, the type “list A” of lists where all elements have type A and the
type A→B of functions mapping any argument of type A to a result of type
B.

For instance, the functional that maps any function f from nat to Z and
any natural number n to the value Σi=n

i=0 f(i) can be defined in Gallina and
has type (nat→Z)→nat→Z.

We must emphasize that we consider the notion of function from a com-
puter science point of view: functions are effective computing processes (in
other words, algorithms) mapping values of type A to values of type B; this
point of view differs from the point of view of set theory, where functions are
particular subsets of the cartesian product A × B.

In Coq , computing a value is done by successive reductions of terms to
an irreducible form. A fundamental property of the Coq formalism is that
computation always terminates (a property known as strong normalization).
Classical results on computability show that a programming language that
makes it possible to describe all computable functions must contain functions
whose computations do not terminate. For this reason, there are computable
functions that can be described in Coq but for which the computation cannot
be performed by the reduction mechanism. In spite of this limitation, the
typing system of Coq is powerful enough to make it possible to describe a large
subclass of all computable functions. Imposing strong normalization does not
significantly reduce the expressive power.
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1.2 Propositions and Proofs

The Coq system is not just another programming language. It actually makes
it possible to express assertions about the values being manipulated. These
values may range over mathematical objects or over programs.

Here are a few examples of assertions or propositions :

• 3 ≤ 8,
• 8 ≤ 3,
• “for all n ≥ 2 the sequence of integers defined by

u0 = n

ui+1 =






1 when ui = 1
ui/2 when ui is even
3ui + 1 otherwise

ultimately reaches the value 1,”
• “list concatenation is associative,”
• “the algorithm insertion_sort is a correct sorting method.”

Some of these assertions are true, others are false, and some are still
conjectures—the third assertion1 is one such example. Nevertheless, all these
examples are well-formed propositions in the proper context.

To make sure a proposition P is true, a safe approach is to provide a proof.
If this proof is complete and readable it can be verified. These requirements
are seldom satisfied, even in the scientific literature. Inherent ambiguities in all
natural languages make it difficult to verify that a proof is correct. Also, the
complete proof of a theorem quickly becomes a huge text and many reasoning
steps are often removed to make the text more readable.

A possible solution to this problem is to define a formal language for proofs,
built along precise rules taken from proof theory. This makes it possible to
ensure that every proof can be verified step by step.

The size of complete proofs makes it necessary to mechanize their verifica-
tion. To trust such a mechanical verification process, it is enough to show that
the verification algorithm actually verifies that all formal rules are correctly
applied.

The size of complete proofs also makes it inpractical to write them man-
ually. In this sense, naming a tool like Coq a proof assistant becomes very
meaningful. Given a proposition that one wants to prove, the system pro-
poses tools to construct a proof. These tools, called tactics, make it easier
to construct the proof of a proposition, using elements taken from a context,
namely, declarations, definitions, axioms, hypotheses, lemmas, and theorems
that were already proven.

In many cases, tactics make it possible to construct proofs automatically,
but this cannot always be the case. Classical results on proof complexity and
1 The sequence ui in this assertion is known as the “Syracuse sequence.”
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computability show that it is impossible to design a general algorithm that
can build a proof for every true formula. For this reason, the Coq system is
an interactive system where the user is given the possibility to decompose
a difficult proof in a collection of lemmas, and to choose the tactic that is
adapted to a difficult case. There is a wide variety of available tactics and
expert users also have the possibility to add their own tactics (see Sect. 7.6).

The user can actually choose not to read proofs, relying on the existence
of automatic tools to construct them and a safe mechanism to verify them.

1.3 Propositions and Types

What is a good language to write proofs? Following a tradition that dates back
to the Automath project [34], one can write the proofs and programs in the
same formalism: typed λ-calculus. This formalism, invented by Church [24],
is one of the many formalisms that can be used to describe computable al-
gorithms and directly inspired the design of all programming languages in
the ML family. The Coq system uses a very expressive variation on typed
λ-calculus, the Calculus of Inductive Constructions [28, 70].2

Chapter 3 of this book covers the relation between proofs and programs,
generally called the Curry–Howard isomorphism. The relation between a pro-
gram and its type is the same as the relation between a proof and the state-
ment it proves. Thus verifying a proof is done by a type verification algorithm.
Throughout this book, we shall see that the practice of Coq is made easier
thanks to the double knowledge mixing intuitions from functional program-
ming and from reasoning practice.

An important characteristic of the Calculus of Constructions is that every
type is also a term and also has a type. The type of a proposition is called
Prop. For instance, the proposition 3 ≤ 7 is at the same time the type of all
proofs that 3 is smaller than 7 and a term of type Prop.

In the same spirit, a predicate makes it possible to build a parametric
proposition. For instance, the predicate “to be a prime number” enables us
to form propositions: “7 is a prime number,” “1024 is a prime number,” and
so on. This predicate can then be considered as a function, whose type is
nat→Prop (see Chap. 4). Other examples of predicates are the predicate “to
be a sorted list” with type (list Z)→Prop and the binary relation ≤, with
type Z→Z→Prop.

More complex predicates can be described in Coq because arguments may
themselves be predicates. For instance, the property of being a transitive
relation on Z is a predicate of type (Z→Z→Prop)→Prop. It is even possible
to consider a polymorphic notion of transitivity with the following type:

(A→A→Prop)→Prop for every data type A.
2 We sometimes say Calculus of Constructions for short.
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1.4 Specifications and Certified Programs

The few examples we have already seen show that propositions can refer to
data and programs.

The Coq type system also makes it possible to consider the converse: the
type of a program can contain constraints expressed as propositions that must
be satisfied by the data. For instance, if n has type nat, the type “a prime
number that divides n” contains a computation-related part “a value of type
nat” and a logical part “this value is prime and divides n.”

This kind of type, called a dependent type because it depends on n, con-
tributes to a large extent to the expressive power of the Coq language. Other
examples of dependent types are data structures containing size constraints:
vectors of fixed length, trees of fixed height, and so on.

In the same spirit, the type of functions that map any n > 1 to a prime
divisor of n can be described in Coq (see Chap. 9). Functions of this type
all compute a prime divisor of the input as soon as the input satisfies the
constraint. These functions can be built with the interactive help of the Coq
system. It is called a certified program and contains both computing informa-
tion and a proof: that is, how to compute such a prime divisor and the reason
why the resulting number actually is a prime number dividing n.

An extraction algorithm makes it possible to obtain an OCAML [23] pro-
gram that can be compiled and executed from a certified program. Such a
program, obtained mechanically from the proof that a specification can be
fulfilled, provides an optimal level of safety. The extraction algorithm works
by removing all logical arguments to keep only the description of the computa-
tion to perform. This makes the distinction between computational and logical
information important. This extraction algorithm is presented in Chaps. 10
and 11.

1.5 A Sorting Example

In this section, we informally present an example to illustrate the use of Coq in
the development of a certified program. The reader can download the complete
Coq source from the site of this book [10], but it is also given in the appendix at
the end of this book. We consider the type “list Z” of the lists of elements of
type Z. We (temporarily) use the following notation: the empty list is written
nil, the list containing 1, 5, and −36 is written 1::5::-36::nil, and the
result of adding n in front of the list l is written n :: l.

How can we specify a sorting program? Such a program is a function that
maps any list l of the type “list Z” to a list l′ where all elements are placed
in increasing order and where all the elements of l are present, also respecting
the number of times they occur. Such properties can be formalized with two
predicates whose definitions are described below.
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1.5.1 Inductive Definitions

To define the predicate “to be a sorted list,” we can use the Prolog language
as inspiration. In Prolog , we can define a predicate with the help of clauses
that enumerate sufficient conditions for this predicate to be satisfied. In our
case, we consider three clauses:

1. the empty list is sorted,
2. every list with only one element is sorted,
3. if a list of the form n :: l is sorted and if p ≤ n then the list p :: n :: l is

sorted.

In other words, we consider the smallest subset X of “list Z” that con-
tains the empty list, all lists with only one element, and such that if the list
n :: l is in X and p ≤ n then p :: n :: l ∈ X . This kind of definition is given as
an inductive definition for a predicate sorted using three constructing rules
(corresponding to the clauses in a Prolog program).

Inductive sorted:list Z→Prop:=
sorted0: sorted(nil)
sorted1: ∀z : Z, sorted(z :: nil)
sorted2: ∀z1, z2 : Z, ∀l : list Z, z1 ≤ z2 ⇒ sorted(z2 :: l) ⇒

sorted(z1 :: z2 :: l)

This kind of definition is studied in Chaps. 8 and 14.
Proving, for instance, that the list 3::6::9::nil is sorted is easy thanks to

the construction rules. Reasoning about arbitrary sorted lists is also possible
thanks to associated lemmas that are automatically generated by the Coq sys-
tem. For instance, techniques known as inversion techniques (see Sect. 8.5.2)
make it possible to prove the following lemma:

sorted_inv: ∀z : Z, ∀l : list Z, sorted(n :: l) ⇒ sorted(l)

1.5.2 The Relation “to have the same elements”

It remains to define a binary relation expressing that a list l is a permuta-
tion of another list l′. A simple way is to define a function nb_occ of type
“Z→list Z→nat” which maps any number z and list l to the number of times
that z occurs in l. This function can simply be defined as a recursive function.
In a second step we can define the following binary relation on lists of elements
in Z:

l ≡ l′ ⇔ ∀z : Z, nb_occ z l = nb_occ z l′

This definition does not provide a way to determine whether two lists are
permutations of each other. Actually, trying to follow it naïvely would require
comparing the number of occurrences of z in l and l′ for all members of Z and
this set is infinite! Nevertheless, it is easy to prove that the relation ≡ is an
equivalence relation and that it satisfies the following properties:
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equiv_cons: ∀z : Z, ∀l, l′ : list Z, l ≡ l′ ⇒ z :: l ≡ z :: l′

equiv_perm: ∀n, p : Z, ∀l, l′ : list Z, l ≡ l′ ⇒ n :: p :: l ≡ p :: n :: l′

These lemmas will be used in the certification of a sorting program.

1.5.3 A Specification for a Sorting Program

All the elements are now available to specify a sorting function on lists of
integers. We have already seen that the Coq type system integrates complex
specifications, with which we can constrain the input and output data of
programs. The specification of a sorting algorithm is the type Z_sort of the
functions that map any list l : list Z to a list l′ satisfying the proposition
sorted(l′) ∧ l ≡ l′.

Building a certified sorting program is the same as building a term of type
Z_sort. In the next sections, we show how to build such a term.

1.5.4 An Auxiliary Function

For the sake of simplicity, we consider insertion sort. This algorithm relies
on an auxiliary function to insert an element in an already sorted list. This
function, named aux, has type “Z→list Z→list Z.” We define aux n l in
the following manner, in a recursion where l varies:

• if l is empty, then n :: nil,
• if l has the form p :: l′ then

– if n ≤ p then n :: p :: l′,
– if p < n, then p :: (aux n l).

This definition uses a comparison between n and p. It is necessary to
understand that the possibility to compare two numbers is a property of Z:
the order ≤ is decidable. In other words, it is possible to program a function
with two arguments n and p that returns a certain value when n ≤ p and a
different value when n > p. In the Coq system, this property is represented
by a certified program given in the standard library and called Z_le_gt_dec
(see Sect. 9.1.3). Not every order is decidable. For instance, we can consider
the type nat→nat representing the functions from N to N and the following
relation:

f < g ⇔ ∃i ∈ N, f(i) < g(i) ∧ (∀j ∈ N. j < i ⇒ f(j) = g(j))

This order relation is undecidable and it is impossible to design a comparison
program similar to Z_le_gt_dec for this order. A consequence of this is that
we cannot design a program to sort lists of functions.3 The purpose of function
aux is described in the following two lemmas, which are easily proved by
induction on l:
3 This kind of problem is not inherent to Coq . When a programming language

provides comparison primitives for a type A it is only because comparison is
decidable in this type. The Coq system only underlines this situation.
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aux_equiv: ∀l : list Z, ∀n : Z, aux n l ≡ n :: l,
aux_sorted: ∀l : list Z, ∀n : Z, sorted l ⇒ sorted aux n l

1.5.5 The Main Sorting Function

It remains to build a certified sorting program. The goal is to map any list l
to a list l′ that satisfies sorted l′ ∧ l ≡ l′.

This program is defined using induction on the list l:

• If l is empty, then l′ = [] is the right value.
• Otherwise l has the form l = n :: l1.

– The induction hypothesis on l1 expresses that we can take a list l′1
satisfying “sorted l′1 ∧ l1 ≡ l′1”.
Now let l′ be the list aux n l′1

– thanks to the lemma aux_sorted we know sorted l′,
– thanks to the lemma aux_equiv and equiv_cons we know

l = n :: l1 ≡ n :: l′1 ≡ aux n l′1 = l′.

This construction of l′ from l, with its logical justifications, is developed
in a dialogue with the Coq sytem. The outcome is a term of type Z_sort, in
other words, a certified sorting program. Using the extraction algorithm on
this program, we obtain a functional program to sort lists of integers. Here is
the output of the Extraction command:4

let rec aux z0 = function
| Nil -> Cons (z0, Nil)
| Cons (a, l’) ->

(match z_le_gt_dec z0 a with
| Left -> Cons (z0, (Cons (a, l’)))
| Right -> Cons (a, (aux z0 l’)))

let rec sort = function
| Nil -> Nil
| Cons (a, tl) -> aux a (sort tl)

This capability to construct mechanically a program from the proof that a
specification can be satisfied is extremely important. Proofs of programs that
could be done on a blackboard or on paper would be incomplete (because they
are too long to write) and even if they were correct, the manual transcription
into a program would still be an occasion to insert errors.
4 This program uses a type with two constructors, Left and Right, that is isomor-

phic to the type of boolean values.
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1.6 Learning Coq

The Coq system is a computer tool. To communicate with this tool, it is
mandatory to obey the rules of a precise language containing a number of
commands and syntactic conventions. The language that is used to describe
terms, types, proofs, and programs is called Gallina and the command lan-
guage is called Vernacular . The precise definition of these languages is given
in the Coq reference manual [81].

Since Coq is an interactive tool, working with it is a dialogue that we
have tried to transcribe in this book. The majority of the examples we give
in this book are well-formed examples of using Coq . For pedagogical reasons,
some examples also exhibit erroneous or clumsy uses and guidelines to avoid
problems are also described.

The Coq development team also maintains a site that gathers all the con-
tributions of users5 with many formal developments concerning a large variety
of application domains. We advise the reader to consult this repository regu-
larly. We also advise suscribing to the coq-club mailing list,6 where general
questions about the evolution of the system appear, its logical formalism are
discussed, and new user contributions are announced.

As well as for training on the Coq tool, this book is also a practical intro-
duction to the theoretical framework of type theory and, more particularly,
the Calculus of Inductive Constructions that combines several of the recent
advances in logic from the point of view of λ-calculus and typing. This research
field has its roots in the work of Russell and Whitehead, Peano, Church, Curry,
Prawitz, and Aczel; the curious reader is invited to consult the collection of
papers edited by J. van Heijenoort “From Frege to Gödel” [84].

1.7 Contents of This Book

The Calculus of Constructions

Chapters 2 to 4 describe the Calculus of Constructions. Chapter 2 presents
the simply typed λ-calculus and its relation with functional programming.
Important notions of terms, types, sorts, and reductions are presented in this
chapter, together with the syntax used in Coq .

Chapter 3 introduces the logical aspects of Coq , mainly with the Curry–
Howard isomorphism; this introduction uses the restricted framework that
combines simply typed λ-calculus and minimal propositional logic. This makes
it possible to introduce the notion of tactics, the tools that support interactive
proof development.

The full expressive power of the Calculus of Constructions, encompassing
polymorphism, dependent types, higher-order types, and so on, is studied
5 http://coq.inria.fr/contribs-eng.html
6 coq-club@pauillac.inria.fr
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in Chap. 4 where the notion of dependent product is introduced. With this
type construct, we can extend the Curry–Howard isomorphism to notions like
universal quantification.

In Chap. 5, we show how the Calculus of Constructions can be used prac-
tically to model logical reasoning. This chapter shows how to perform simple
proofs in a powerful logic.

Inductive Constructions

The Calculus of Inductive Constructions is introduced in Chap. 6, where we
describe how to define data structures such as natural numbers, lists, and
trees. New tools are associated with these types: tactics for proofs by induc-
tion, simplification rules, and so on. Chapter 7 is not related to inductive
constructions but is included there because the tactics it describes make the
exposition in chapter 8 easier to present.

The notion of inductive type is not restricted to tree-like data structures:
predicates can also be defined inductively, in the style of some kind of higher-
order Prolog7 (Chap. 8). This framework also accommodates the basic notions
of everyday logic: contradiction, conjunction, disjunction, existential quantifi-
cation.

Certified Programs and Extraction

In Chap. 9, we study how to describe complex specifications about data and
programs containing logical components. A variety of type constructs that
make it possible to express a variety of program specifications is presented,
together with the tactics that make the task of building certified programs
easier.

Chapters 10 and 11 study how to produce some OCAML code effectively
by mechanical extraction from the proofs.

Advanced Use

The last chapters of the book present the advanced aspects of Coq , both
from the user’s point of view and from the understanding of its theoretical
mechanics.

Chapter 12 presents the module system of Coq , which is closely related
to the module system of OCAML. This system makes it possible to represent
the dependencies between mathematical theories and to build truly reusable
certified program components.
7 Recall that Prolog concerns first-order logic. In the framework of plain Prolog , it

is not possible to define predicates over any relation, like the transitive closure of
a binary relation. In the Coq framework, this is possible.
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Chapter 13 shows how to represent infinite objects—for instance, the be-
haviors of transition systems—in an extension of the Calculus of Construc-
tions. We describe the main techniques to specify and build these objects,
together with proof techniques.

Chapter 14 revisits the basic principles that govern inductive definitions
and ensure their logical consistency. This study provides keys for even more
advanced studies.

Chapter 15 describes techniques to broaden the class of recursive functions
that can be described in the Calculus of Inductive Constructions and how to
reason on these functions.

Proof Automation

Chapter 7 introduces the tools that make it possible to build complex proofs:
namely, tactics. This chapter describes the tactics associated with inductive
types, automatic proof tactics, numerical proof tactics, and a language that
makes it possible to define new tactics. Thanks to the tools provided in this
chapter, the proofs described in later chapters can be described more concisely.

Chapter 16 describes a design technique for complex tactics that is par-
ticularly well-suited for the Calculus of Constructions: namely, the technique
of proof by reflection.

1.8 Lexical Conventions

This book provides a wealth of examples that can be input in the Coq system
and the answers of the system to these examples. Throughout this book, we
use the classical convention of books about computer tools: the typewriter
font is used to represent text input by the user, while the italic font is used
to represent the text output by the system as answers. We have respected the
syntax imposed by Coq , but we rely on a few conventions that make the text
easier to read:

• The mathematical symbols ≤, �=, ∃, ∀, →, ∨, ∧, and ⇒stand for the
character strings <=, <>, exists, forall, ->, \/, /\, and =>, respectively.
For instance, the Coq statement

forall A:Set,(exists x : A, forall (y:A), x <> y) -> 2 = 3

is written as follows in this book:

∀ A:Set,(∃x:A, ∀ y:A, x �= y)→ 2 = 3

• When a fragment of Coq input text appears in the middle of regular text,
we often place this fragment between double quotes “. . . .” These double
quotes do not belong to the Coq syntax.

• Users should also remember that any string enclosed between (* and *)
is a comment and is ignored by the Coq system.
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