# Contents

1 Introduction .............................................. 1

Part I Historical Overview
and Three-Phase Traffic Theory

2 Spatiotemporal Pattern Formation
   in Freeway Traffic ........................................ 13
   2.1 Introduction ............................................. 13
   2.2 Traffic and Synergetics ................................. 14
   2.3 Free and Congested Traffic .............................. 15
      2.3.1 Local Measurements of Traffic Variables .......... 15
      2.3.2 Examples of Freeway Infrastructures  
         and Detector Arrangements .......................... 17
      2.3.3 Free Traffic Flow .................................... 18
      2.3.4 Congested Traffic ................................. 21
      2.3.5 Empirical Fundamental Diagram .................... 22
      2.3.6 Complex Local Dynamics of Congested Traffic .... 24
   2.4 Main Empirical Features of Spatiotemporal
      Congested Patterns ...................................... 27
      2.4.1 Three Traffic Phases ................................. 27
      2.4.2 Characteristic Parameters of Wide Moving Jams .... 28
      2.4.3 Spontaneous Breakdown Phenomenon  
         (Spontaneous F→S Transition) ......................... 32
      2.4.4 Induced Breakdown Phenomenon ...................... 34
      2.4.5 Synchronized Flow Patterns ........................ 35
      2.4.6 Catch Effect ........................................ 37
      2.4.7 Moving Jam Emergence in Synchronized Flow:  
         General Pattern ...................................... 41
      2.4.8 Expanded Congested Patterns ....................... 46
      2.4.9 Foreign Wide Moving Jams .......................... 51
      2.4.10 Reproducible and Predictable Congested Patterns 53
      2.4.11 Methodology for Empirical Congested Pattern Study
         ......................................................... 57
   2.5 Conclusions, Fundamental Empirical Features  
   of Spatiotemporal Congested Patterns .................... 58
3 Overview of Freeway Traffic Theories and Models: Fundamental Diagram Approach ............ 63

3.1 Introduction: Hypothesis About Theoretical Fundamental Diagram .......... 63

3.2 Achievements of Fundamental Diagram Approach to Traffic Flow Modeling and Theory ........ 64

3.2.1 Conservation of Vehicle Number on Road and Front Velocity .................. 66

3.2.2 The Lighthill–Whitham–Richards Model and Shock Wave Theory ................ 67

3.2.3 Collective Flow Concept and Probability of Passing ......................... 68

3.2.4 Scenarios for Moving Jam Emergence ........................................ 69

3.2.5 Wide Moving Jam Characteristics ............................................ 69

3.2.6 Flow Rate in Wide Moving Jam Outflow, The Line $J$ .................... 71

3.2.7 Metastable States of Free Flow with Respect to Moving Jam Emergence ........ 73

3.3 Drawbacks of Fundamental Diagram Approach in Describing of Spatiotemporal Congested Freeway Patterns ............................................. 78

3.3.1 Shock Wave Theory .......................................................... 78

3.3.2 Models and Theories of Moving Jam Emergence in Free Flow .......... 80

3.3.3 Models and Theories with Variety of Vehicle and Driver Characteristics ............. 83

3.3.4 Application of Classical Queuing Theories to Freeway Congested Traffic Patterns ............. 84

3.4 Conclusions ................................................................. 85

4 Basis of Three-Phase Traffic Theory ........................................... 87

4.1 Introduction and Remarks on Three-Phase Traffic Theory .......................... 87

4.2 Definition of Traffic Phases in Congested Traffic Based on Empirical Data .......... 88

4.2.1 Objective Criteria for Traffic Phases in Congested Traffic .................. 88

4.2.2 Explanation of Terms “Synchronized Flow” and “Wide Moving Jam” .............. 90

4.2.3 Mean Vehicle Trajectories ..................................................... 91

4.2.4 Flow Rate in Synchronized Flow .............................................. 91

4.2.5 Empirical Line $J$ ............................................................... 93

4.2.6 Propagation of Two Wide Moving Jams ...................................... 94

4.3 Fundamental Hypothesis of Three-Phase Traffic Theory ............................ 95
6.4 Double Z-Shaped Traffic Flow Characteristics .............. 158
6.4.1 Z-Characteristic for S→J Transition .............. 158
6.4.2 Cascade of Two Phase Transitions
(F→S→J Transitions) .................................. 161
6.4.3 Wide Moving Jam Emergence Within Initial Moving Synchronized Flow Pattern ... 167
6.5 Moving Jam Emergence in Synchronized Flow at Bottlenecks .............. 169
6.5.1 Why Moving Jams Do not Emerge in Free Flow at Bottlenecks .................. 169
6.5.2 Z-Characteristic for S→J Transition at Bottlenecks ... 171
6.5.3 Physics of Moving Jam Emergence in Synchronized Flow .......... 172
6.5.4 Double Z-Characteristic and F→S→J Transitions at Bottlenecks .................. 176
6.6 Conclusions ............................................ 178

7 Congested Patterns at Freeway Bottlenecks in Three-Phase Traffic Theory .................. 179
7.1 Introduction ............................................. 179
7.2 Two Main Types of Spatiotemporal Congested Patterns .............. 179
7.3 Simplified Diagram of Congested Patterns at Isolated Bottlenecks .................. 180
7.4 Synchronized Flow Patterns ...................... 183
7.4.1 Influence of Fluctuations on Limit Point for Free Flow at Bottlenecks .................. 183
7.4.2 Moving Synchronized Flow Pattern Emergence at Bottlenecks .................. 185
7.4.3 Pinning of Downstream Front of Synchronized Flow at Bottlenecks .................. 189
7.4.4 Transformation Between Widening and Localized Synchronized Flow Patterns .................. 192
7.5 General Patterns ............................................. 194
7.5.1 Spatiotemporal Structure of General Patterns .......... 194
7.5.2 Dissolving General Pattern and Pattern Transformation .................. 198
7.6 Physics of General Patterns ...................... 200
7.6.1 Region of Wide Moving Jams .................. 200
7.6.2 Narrow Moving Jam Emergence in Pinch Region ... 204
7.6.3 Moving Jam Suppression Effect .................. 209
7.6.4 Width of Pinch Region .................. 210
7.6.5 Wide Moving Jam Propagation Through Bottlenecks 211
7.7 Conclusions ............................................. 213
### 8 Freeway Capacity in Three-Phase Traffic Theory

- **8.1 Introduction** ........................................ 217
- **8.2 Homogeneous Road** .................................. 217
- **8.3 Freeway Capacity in Free Flow at Bottlenecks** .......... 218
  - **8.3.1 Definition of Freeway Capacity** .................. 218
  - **8.3.2 Probability for Speed Breakdown at Bottlenecks** ...... 220
  - **8.3.3 Threshold Boundary for Speed Breakdown** ........... 223
  - **8.3.4 Features of Freeway Capacity at Bottlenecks** ......... 226
- **8.4 Z-Characteristic and Probability for Speed Breakdown** .......... 228
- **8.5 Congested Pattern Capacity at Bottlenecks** ............. 232
- **8.6 Main Behavioral Assumptions of Three-Phase Traffic Theory** .......... 234
- **8.7 Conclusions** ........................................ 237

### Part II Empirical Spatiotemporal Congested Traffic Patterns

#### 9 Empirical Congested Patterns at Isolated Bottlenecks

- **9.1 Introduction** .......................................... 241
- **9.2 Effectual Bottlenecks and Effective Locations of Bottlenecks** .......... 242
  - **9.2.1 Effectual Bottlenecks on Freeway A5-South** .......... 244
  - **9.2.2 Effectual Bottlenecks on Freeway A5-North** .......... 247
  - **9.2.3 Isolated Effectual Bottleneck** ....................... 247
- **9.3 Empirical Synchronized Flow Patterns** .................. 250
  - **9.3.1 Widening Synchronized Flow Pattern** ................. 250
  - **9.3.2 Localized Synchronized Flow Pattern** ................. 255
  - **9.3.3 Moving Synchronized Flow Pattern** ................... 256
- **9.4 Empirical General Patterns** .......................... 259
  - **9.4.1 Empirical General Pattern of Type (1)** ............... 259
  - **9.4.2 Empirical General Pattern of Type (2)** ............... 262
  - **9.4.3 Dependence of Effective Location of Bottleneck on Time** .......... 264
- **9.5 Conclusions** ........................................ 268

#### 10 Empirical Breakdown Phenomenon: Phase Transition from Free Flow to Synchronized Flow

- **10.1 Introduction** .......................................... 269
- **10.2 Spontaneous Breakdown Phenomenon (Spontaneous F→S Transition) at On-Ramp Bottlenecks** .......... 270
10.3 Probability for F→S Transition ............................... 274
  10.3.1 Empirical and Theoretical Definitions
       of Freeway Capacities at Bottlenecks .................... 275
  10.3.2 Pre-Discharge Flow Rate ............................... 278
10.4 Induced Speed Breakdown
    at On-Ramp Bottlenecks .................................. 281
  10.4.1 F→S Transition Induced by Wide Moving Jam
        Propagation Through Effectual Bottleneck ............... 282
  10.4.2 Induced Speed Breakdown at Bottlenecks
        Caused by Synchronized Flow Propagation ............... 282
10.5 Breakdown Phenomenon at Off-Ramp Bottlenecks .......... 285
10.6 Breakdown Phenomenon Away from Bottlenecks .......... 289
10.7 Some Empirical Features of Synchronized Flow ......... 294
  10.7.1 Complex Behavior in Flow–Density Plane .................. 294
  10.7.2 Three Types of Synchronized Flow ..................... 296
  10.7.3 Overlapping States of Free Flow
        and Synchronized Flow in Density ...................... 299
  10.7.4 Analysis of Individual Vehicle Speeds ................. 302
10.8 Conclusions .................................................. 302

11 Empirical Features
    of Wide Moving Jam Propagation .......................... 305
  11.1 Introduction .................................................. 305
  11.2 Characteristic Parameters of Wide Moving Jams ......... 305
       11.2.1 Empirical Determination of Line J .................. 306
       11.2.2 Dependence of Characteristic Jam Parameters
              on Traffic Conditions ............................... 310
       11.2.3 Propagation of Wide Moving Jams
              Through Synchronized Flow ......................... 311
       11.2.4 Moving Blanks Within Wide Moving Jams .......... 314
  11.3 Features of Foreign Wide Moving Jams ................. 316
  11.4 Conclusions .................................................. 318

12 Empirical Features
    of Moving Jam Emergence ................................. 321
  12.1 Introduction .................................................. 321
  12.2 Pinch Effect in Synchronized Flow ...................... 321
       12.2.1 Narrow Moving Jam Emergence ...................... 323
       12.2.2 Wide Moving Jam Emergence (S→J Transition) .... 328
       12.2.3 Correlation of Characteristics for Pinch Region
              and Wide Moving Jams ............................... 332
       12.2.4 Frequency of Narrow Moving Jam Emergence ....... 332
       12.2.5 Saturation and Dynamic Features of Pinch Effect .. 334
       12.2.6 Spatial Dependence of Speed Correlation Function .. 335
12.2.7 Effect of Wide Moving Jam Emergence
in Pinch Region of General Pattern 337
12.3 Strong and Weak Congestion 337
12.4 Moving Jam Emergence in Synchronized Flow
Away from Bottlenecks 340
12.5 Pattern Formation at Off-Ramp Bottlenecks 343
12.6 Induced $F \rightarrow J$ Transition 344
12.7 Conclusions 348

13 Empirical Pattern Evolution and Transformation
at Isolated Bottlenecks 349
13.1 Introduction 349
13.2 Evolution of General Patterns
at On-Ramp Bottlenecks 350
13.2.1 Transformation of General Pattern
into Synchronized Flow Pattern 350
13.2.2 Alternation of Free Flow and Synchronized Flow
in Congested Patterns 350
13.2.3 Hysteresis Effects Due to Pattern Formation
and Dissolution 352
13.3 Transformations of Congested Patterns
Under Weak Congestion 354
13.4 Discharge Flow Rate and Capacity Drop 357
13.5 Conclusions 363

14 Empirical Complex Pattern Formation Caused
by Peculiarities of Freeway Infrastructure 365
14.1 Introduction 365
14.2 Expanded Congested Pattern 366
14.2.1 Common Features 366
14.2.2 Example of Expanded Congested Pattern 367
14.3 Dissolution of Moving Jams at Bottlenecks 369
14.3.1 Dynamics of Wide Moving Jam Outflow 369
14.3.2 Localized Synchronized Flow Patterns
Resulting from Moving Jam Dissolution 371
14.4 Conclusions 372

15 Dependence of Empirical Fundamental
Diagram on Congested Pattern Features 373
15.1 Introduction 373
15.1.1 Empirical Fundamental Diagram
and Steady State Model Solutions 373
15.1.2 Two Branches of Empirical Fundamental Diagram 374
15.1.3 Line $J$ and Wide Moving Jam Outflow 375
15.2 Empirical Fundamental Diagram

15.2.1 Asymptotic Behavior of Empirical Fundamental Diagrams ........................................ 378

15.2.2 Influence of Different Vehicle Characteristics on Fundamental Diagrams .................. 383

15.3 Dependence of Empirical Fundamental Diagram on Congested Pattern Type ................... 385

15.4 Explanation of Reversed-$\lambda$, Inverted-V, and Inverted-U Empirical Fundamental Diagrams ........................................ 392

15.5 Conclusions ........................................ 394

Part III Microscopic Three-Phase Traffic Theory

16 Microscopic Traffic Flow Models for Spatiotemporal Congested Patterns ........................ 399

16.1 Introduction ........................................ 399

16.2 Cellular Automata Approach to Three-Phase Traffic Theory ........................................ 401

16.2.1 General Rules of Vehicle Motion ........................................ 401

16.2.2 Synchronization Distance ........................................ 402

16.2.3 Steady States ........................................ 403

16.2.4 Fluctuations of Acceleration and Deceleration in Cellular Automata Models .............. 405

16.2.5 Boundary Conditions and Model of On-Ramp ........................................ 407

16.2.6 Summary of Model Equations and Parameters ........................................ 408

16.3 Continuum in Space Model Approach to Three-Phase Traffic Theory ....................... 408

16.3.1 Vehicle Motion Rules ........................................ 408

16.3.2 Speed Adaptation Effect Within Synchronization Distance ........................................ 409

16.3.3 Motion State Model for Random Acceleration and Deceleration ........................................ 411

16.3.4 Safe Speed ........................................ 413

16.3.5 2D Region of Steady States ........................................ 414

16.3.6 Physics of Driver Time Delays ........................................ 415

16.3.7 Over-Acceleration and Over-Deceleration Effects ........................................ 419

16.3.8 Lane Changing Rules ........................................ 420

16.3.9 Boundary Conditions and Models of Bottlenecks ........................................ 421

16.3.10 Summary of Model Equations and Parameters ........................................ 425

16.4 Conclusions ........................................ 431

17 Microscopic Theory of Phase Transitions in Freeway Traffic ........................................ 433

17.1 Introduction ........................................ 433
17.2 Microscopic Theory of Breakdown Phenomenon
   (F→S Transition) ........................................ 434
   17.2.1 Homogeneous Road .................................. 434
   17.2.2 Breakdown Phenomenon at On-Ramp Bottlenecks ... 438
17.3 Moving Jam Emergence and Double Z-Shaped
   Characteristics of Traffic Flow .......................... 442
   17.3.1 F→J Transition on Homogeneous Road .......... 442
   17.3.2 S→J Transition on Homogeneous Road .......... 443
   17.3.3 Moving Jam Emergence in Synchronized
   Flow Upstream of Bottlenecks ............................ 445
17.4 Conclusions ............................................. 448

18 Congested Patterns at Isolated Bottlenecks .............. 449
18.1 Introduction ............................................. 449
18.2 Diagram of Congested Patterns
   at Isolated On-Ramp Bottlenecks .......................... 450
   18.2.1 Synchronized Flow Patterns ........................ 450
   18.2.2 Single Vehicle Characteristics in Synchronized Flow 454
   18.2.3 Maximum Freeway Capacities
   and Limit Point in Diagram ................................ 458
   18.2.4 Pinch Effect in General Patterns .................. 458
   18.2.5 Peculiarities of General Patterns .................. 462
18.3 Weak and Strong Congestion
   in General Patterns ....................................... 464
   18.3.1 Criteria for Strong and Weak Congestion .......... 464
   18.3.2 Strong Congestion Features ........................ 467
18.4 Evolution of Congested Patterns
   at On-Ramp Bottlenecks ..................................... 469
18.5 Hysteresis and Nucleation Effects by Pattern
   Formation at On-Ramp Bottlenecks ......................... 471
   18.5.1 Threshold Boundary for Synchronized Flow Patterns 471
   18.5.2 Threshold Boundary for General Patterns .......... 475
   18.5.3 Overlap of Different Metastable Regions
   and Multiple Pattern Excitation .......................... 476
18.6 Strong Congestion at Merge Bottlenecks .................. 477
   18.6.1 Comparison of General Patterns at Merge Bottleneck
   and at On-Ramp Bottleneck ................................ 477
   18.6.2 Diagram of Congested Patterns ........................ 478
18.7 Weak Congestion at Off-Ramp Bottlenecks ................. 480
   18.7.1 Diagram of Congested Patterns ........................ 480
   18.7.2 Comparison of Pattern Features
   at Various Bottlenecks .................................... 480
18.8 Congested Pattern Capacity
   at On-Ramp Bottlenecks .................................... 483
18.8.1 Transformations of Congested Patterns at On-Ramp Bottlenecks | 483
18.8.2 Temporal Evolution of Discharge Flow Rate | 486
18.8.3 Dependence of Congested Pattern Capacity on On-Ramp Inflow | 490

18.9 Conclusions | 492

19 Complex Congested Pattern Interaction and Transformation | 495
19.1 Introduction | 495
19.2 Catch Effect and Induced Congested Pattern Formation | 496
19.2.1 Induced Pattern Emergence | 496
19.3 Complex Congested Patterns and Pattern Interaction | 498
19.3.1 Foreign Wide Moving Jams | 498
19.3.2 Expanded Congested Patterns | 501
19.4 Intensification of Downstream Congestion Due to Upstream Congestion | 504
19.5 Conclusions | 507

20 Spatiotemporal Patterns in Heterogeneous Traffic Flow | 509
20.1 Introduction | 509
20.2 Microscopic Two-Lane Model for Heterogeneous Traffic Flow with Various Driver Behavioral Characteristics and Vehicle Parameters | 510
20.2.1 Single-Lane Model | 510
20.2.2 Two-Lane Model | 512
20.2.3 Boundary, Initial Conditions, and Model of Bottleneck | 514
20.2.4 Simulation Parameters | 515
20.3 Patterns in Heterogeneous Traffic Flow with Different Driver Behavioral Characteristics | 515
20.3.1 Vehicle Separation Effect in Free Flow | 515
20.3.2 Onset of Congestion in Free Flow on Homogeneous Road | 516
20.3.3 Lane Asymmetric Emergence of Moving Synchronized Flow Patterns | 519
20.3.4 Congested Patterns at On-Ramp Bottlenecks | 519
20.3.5 Wide Moving Jam Propagation | 525
20.4 Patterns in Heterogeneous Traffic Flow with Different Vehicle Parameters | 528
20.4.1 Peculiarity of Wide Moving Jam Propagation | 530
20.4.2 Partial Destroying of Speed Synchronization | 533
20.4.3 Extension of Free Flow Recovering and Vehicle Separation .......................... 533

20.5 Weak Heterogeneous Flow .................................................. 535
  20.5.1 Spontaneous Onset of Congestion Away from Bottlenecks ....................... 535
  20.5.2 Lane Asymmetric Free Flow Distributions .................................. 537

20.6 Characteristics of Congested Pattern Propagation in Heterogeneous Traffic Flow .................................................. 538
  20.6.1 Velocity of Downstream Jam Front ........................................ 538
  20.6.2 Flow Rate in Jam Outflow ............................................... 540
  20.6.3 Velocity of Downstream Front of Moving Synchronized Flow Patterns .......... 541

20.7 Conclusions ........................................................................ 542

Part IV Engineering Applications

21 ASDA and FOTO Models of Spatiotemporal Pattern Dynamics based on Local Traffic Flow Measurements .......... 547
  21.1 Introduction ................................................................. 547
  21.2 Identification of Traffic Phases ....................................... 548
  21.3 Determination of Traffic Phases with FOTO Model ............... 550
    21.3.1 Fuzzy Rules for FOTO Model ...................................... 551
  21.4 Tracking Moving Jams with ASDA:
    Simplified Discussion ....................................................... 554
    21.4.1 Tracking Synchronized Flow with FOTO Model .............. 557
    21.4.2 ASDA-Like Approach to Tracking Synchronized Flow .......... 559
    21.4.3 Cumulative Flow Rate Approach to Tracking Synchronized Flow .......... 560
  21.5 Conclusions ..................................................................... 561

22 Spatiotemporal Pattern Recognition, Tracking, and Prediction .................................................. 563
  22.1 Introduction ................................................................. 563
  22.2 FOTO and ASDA Application for Congested Pattern Recognition and Tracking .......... 563
    22.2.1 Validation of FOTO and ASDA Models at Traffic Control Center of German Federal State of Hessen .................................................. 563
    22.2.2 Application of FOTO and ASDA Models on Other Freeways in Germany and USA .......... 565
  22.3 Spatiotemporal Pattern Prediction ...................................... 568
    22.3.1 Historical Time Series ............................................... 568
XVIII Contents

22.3.2 Database of Reproducible and Predictable Spatiotemporal Pattern Features ................. 575
22.3.3 Vehicle Onboard Autonomous Spatiotemporal Congested Pattern Prediction .................. 580
22.4 Traffic Analysis and Prediction in Urban Areas ................. 582
  22.4.1 Model for Traffic Prediction in City Networks ................. 582
22.5 Conclusions ......................................................... 589

23 Control of Spatiotemporal Congested Patterns ........................................ 591
  23.1 Introduction ......................................................... 591
  23.2 Scenarios for Traffic Management and Control ................................. 592
  23.3 Spatiotemporal Pattern Control
     Through Ramp Metering ........................................ 593
     23.3.1 Free Flow Control Approach ................................ 595
     23.3.2 Congested Pattern Control Approach .......................... 606
     23.3.3 Comparison of Free Flow and Congested Pattern Control Approaches ....... 610
     23.3.4 Comparison of Different Control Rules
     in Congested Pattern Control Approach ................................ 614
  23.4 Dissolution of Congested Patterns ........................................ 617
  23.5 Prevention of Induced Congestion ........................................ 620
  23.6 Influence of Automatic Cruise Control
     on Congested Patterns ........................................ 624
     23.6.1 Model of Automatic Cruise Control ................................ 624
     23.6.2 Automatic Cruise Control with Quick Dynamic Adaptation ............... 626
     23.6.3 Automatic Cruise Control with Slow Dynamic Adaptation ................ 628
  23.7 Conclusions ......................................................... 629

24 Conclusion ......................................................... 631

A Terms and Definitions ....................................................... 633
  A.1 Traffic States, Parameters, and Variables ................................ 633
  A.2 Traffic Phases ......................................................... 633
  A.3 Phase Transitions ..................................................... 634
  A.4 Bottleneck Characteristics ........................................... 635
  A.5 Congested Patterns at Bottlenecks ...................................... 636
  A.6 Local Perturbations ................................................... 637
  A.7 Critical and Threshold Traffic Variables .................................. 637
  A.8 Some Features of Phase Transitions
     and Traffic State Stability ........................................ 638
B  ASDA and FOTO Models
for Practical Applications ........................................ 641

B.1  ASDA Model for Several Road Detectors ................. 641

B.1.1  Extensions of ASDA for On-Ramps, Off-Ramps,
and Changing of Number of Freeway Lanes
Upstream of Moving Jam ........................................ 643

B.1.2  Extensions of ASDA for On-Ramps, Off-Ramps,
and Changing of Number of Freeway Lanes
Downstream of Moving Jam ..................................... 645

B.1.3  FOTO Model for Several Road Detectors .......... 646

B.1.4  Extended Rules for FOTO Model ...................... 646

B.2  Statistical Evaluation of Different
Reduced Detector Configurations ............................. 651

References .......................................................... 655

Index ................................................................. 679
The Physics of Traffic
Empirical Freeway Pattern Features, Engineering Applications, and Theory
Kerner, B.S.
2004, XXIII, 682 p., Hardcover
ISBN: 978-3-540-20716-0