Contents

1 Introduction .. 1

Part I Historical Overview
and Three-Phase Traffic Theory

2 Spatiotemporal Pattern Formation
in Freeway Traffic ... 13
 2.1 Introduction .. 13
 2.2 Traffic and Synergetics 14
 2.3 Free and Congested Traffic 15
 2.3.1 Local Measurements of Traffic Variables 15
 2.3.2 Examples of Freeway Infrastructures and Detector Arrangements 17
 2.3.3 Free Traffic Flow 18
 2.3.4 Congested Traffic 21
 2.3.5 Empirical Fundamental Diagram 22
 2.3.6 Complex Local Dynamics of Congested Traffic 24
 2.4 Main Empirical Features of Spatiotemporal
 Congested Patterns 27
 2.4.1 Three Traffic Phases 27
 2.4.2 Characteristic Parameters of Wide Moving Jams ... 28
 2.4.3 Spontaneous Breakdown Phenomenon
 (Spontaneous F→S Transition) 32
 2.4.4 Induced Breakdown Phenomenon 34
 2.4.5 Synchronized Flow Patterns 35
 2.4.6 Catch Effect 37
 2.4.7 Moving Jam Emergence in Synchronized Flow:
 General Pattern 41
 2.4.8 Expanded Congested Patterns 46
 2.4.9 Foreign Wide Moving Jams 51
 2.4.10 Reproducible and Predictable Congested Patterns .. 53
 2.4.11 Methodology for Empirical Congested Pattern Study 57
 2.5 Conclusions, Fundamental Empirical Features
 of Spatiotemporal Congested Patterns 58
3 Overview of Freeway Traffic Theories and Models: Fundamental Diagram Approach 63
3.1 Introduction: Hypothesis About Theoretical Fundamental Diagram 63
3.2 Achievements of Fundamental Diagram Approach to Traffic Flow Modeling and Theory 64
 3.2.1 Conservation of Vehicle Number on Road and Front Velocity 66
 3.2.2 The Lighthill–Whitham–Richards Model and Shock Wave Theory 67
 3.2.3 Collective Flow Concept and Probability of Passing 68
 3.2.4 Scenarios for Moving Jam Emergence .. 69
 3.2.5 Wide Moving Jam Characteristics .. 69
 3.2.6 Flow Rate in Wide Moving Jam Outflow. The Line \(J \) ... 71
 3.2.7 Metastable States of Free Flow with Respect to Moving Jam Emergence 73
3.3 Drawbacks of Fundamental Diagram Approach in Describing of Spatiotemporal Congested Freeway Patterns ... 78
 3.3.1 Shock Wave Theory ... 78
 3.3.2 Models and Theories of Moving Jam Emergence in Free Flow 80
 3.3.3 Models and Theories with Variety of Vehicle and Driver Characteristics 83
 3.3.4 Application of Classical Queuing Theories to Freeway Congested Traffic Patterns .. 84
3.4 Conclusions.. 85
4 Basis of Three-Phase Traffic Theory ... 87
4.1 Introduction and Remarks on Three-Phase Traffic Theory 87
4.2 Definition of Traffic Phases in Congested Traffic Based on Empirical Data 88
 4.2.1 Objective Criteria for Traffic Phases in Congested Traffic 88
 4.2.2 Explanation of Terms “Synchronized Flow” and “Wide Moving Jam” 90
 4.2.3 Mean Vehicle Trajectories ... 91
 4.2.4 Flow Rate in Synchronized Flow ... 91
 4.2.5 Empirical Line \(J \) ... 93
 4.2.6 Propagation of Two Wide Moving Jams .. 94
4.3 Fundamental Hypothesis of Three-Phase Traffic Theory .. 95
Contents

6.4 Double Z-Shaped Traffic Flow Characteristics 158
 6.4.1 Z-Characteristic for S→J Transition 158
 6.4.2 Cascade of Two Phase Transitions
 (F→S→J Transitions) .. 161
 6.4.3 Wide Moving Jam Emergence
 Within Initial Moving Synchronized Flow Pattern 167

6.5 Moving Jam Emergence
 in Synchronized Flow at Bottlenecks 169
 6.5.1 Why Moving Jams Do not Emerge
 in Free Flow at Bottlenecks 169
 6.5.2 Z-Characteristic for S→J Transition at Bottlenecks 171
 6.5.3 Physics of Moving Jam Emergence
 in Synchronized Flow .. 172
 6.5.4 Double Z-Characteristic and F→S→J Transitions
 at Bottlenecks .. 176

6.6 Conclusions .. 178

7 Congested Patterns at Freeway Bottlenecks
 in Three-Phase Traffic Theory 179
 7.1 Introduction .. 179
 7.2 Two Main Types
 of Spatiotemporal Congested Patterns 179
 7.3 Simplified Diagram of Congested Patterns
 at Isolated Bottlenecks 180
 7.4 Synchronized Flow Patterns 183
 7.4.1 Influence of Fluctuations on Limit Point
 for Free Flow at Bottlenecks 183
 7.4.2 Moving Synchronized Flow Pattern
 Emergence at Bottlenecks 185
 7.4.3 Pinning of Downstream Front
 of Synchronized Flow at Bottlenecks 189
 7.4.4 Transformation Between Widening
 and Localized Synchronized Flow Patterns 192
 7.5 General Patterns .. 194
 7.5.1 Spatiotemporal Structure of General Patterns 194
 7.5.2 Dissolving General Pattern
 and Pattern Transformation 198
 7.6 Physics of General Patterns 200
 7.6.1 Region of Wide Moving Jams 200
 7.6.2 Narrow Moving Jam Emergence in Pinch Region 204
 7.6.3 Moving Jam Suppression Effect 209
 7.6.4 Width of Pinch Region 210
 7.6.5 Wide Moving Jam Propagation Through Bottlenecks 211
 7.7 Conclusions .. 213
8 Freeway Capacity in Three-Phase Traffic Theory 217
 8.1 Introduction ... 217
 8.2 Homogeneous Road ... 217
 8.3 Freeway Capacity in Free Flow at Bottlenecks 218
 8.3.1 Definition of Freeway Capacity 218
 8.3.2 Probability for Speed Breakdown at Bottlenecks 220
 8.3.3 Threshold Boundary for Speed Breakdown 223
 8.3.4 Features of Freeway Capacity at Bottlenecks 226
 8.4 Z-Characteristic and Probability for Speed Breakdown 228
 8.5 Congested Pattern Capacity at Bottlenecks 232
 8.6 Main Behavioral Assumptions of Three-Phase Traffic Theory .. 234
 8.7 Conclusions .. 237

Part II Empirical Spatiotemporal Congested Traffic Patterns

9 Empirical Congested Patterns
 at Isolated Bottlenecks .. 241
 9.1 Introduction ... 241
 9.2 Effectual Bottlenecks and Effective Locations
 of Bottlenecks .. 242
 9.2.1 Effectual Bottlenecks on Freeway A5-South 244
 9.2.2 Effectual Bottlenecks on Freeway A5-North 247
 9.2.3 Isolated Effectual Bottleneck .. 247
 9.3 Empirical Synchronized Flow Patterns 250
 9.3.1 Widening Synchronized Flow Pattern 250
 9.3.2 Localized Synchronized Flow Pattern 255
 9.3.3 Moving Synchronized Flow Pattern 256
 9.4 Empirical General Patterns .. 259
 9.4.1 Empirical General Pattern of Type (1) 259
 9.4.2 Empirical General Pattern of Type (2) 262
 9.4.3 Dependence of Effective Location
 of Bottleneck on Time ... 264
 9.5 Conclusions ... 268

10 Empirical Breakdown Phenomenon:
 Phase Transition from Free Flow to Synchronized Flow 269
 10.1 Introduction ... 269
 10.2 Spontaneous Breakdown Phenomenon
 (Spontaneous F→S Transition) at On-Ramp Bottlenecks 270
XII Contents

10.3 Probability for F→S Transition 274
 10.3.1 Empirical and Theoretical Definitions
 of Freeway Capacities at Bottlenecks 275
 10.3.2 Pre-Discharge Flow Rate 278

10.4 Induced Speed Breakdown
 at On-Ramp Bottlenecks 281
 10.4.1 F→S Transition Induced by Wide Moving Jam
 Propagation Through Effectual Bottleneck 282
 10.4.2 Induced Speed Breakdown at Bottlenecks
 Caused by Synchronized Flow Propagation 282

10.5 Breakdown Phenomenon at Off-Ramp Bottlenecks 285

10.6 Breakdown Phenomenon Away from Bottlenecks 289

10.7 Some Empirical Features of Synchronized Flow 294
 10.7.1 Complex Behavior in Flow–Density Plane 294
 10.7.2 Three Types of Synchronized Flow 296
 10.7.3 Overlapping States of Free Flow
 and Synchronized Flow in Density 299
 10.7.4 Analysis of Individual Vehicle Speeds 302

10.8 Conclusions ... 302

11 Empirical Features
 of Wide Moving Jam Propagation 305
 11.1 Introduction ... 305
 11.2 Characteristic Parameters of Wide Moving Jams 305
 11.2.1 Empirical Determination of Line J 306
 11.2.2 Dependence of Characteristic Jam Parameters
 on Traffic Conditions 310
 11.2.3 Propagation of Wide Moving Jams
 Through Synchronized Flow 311
 11.2.4 Moving Blanks Within Wide Moving Jams 314

 11.3 Features of Foreign Wide Moving Jams 316
 11.4 Conclusions ... 318

12 Empirical Features
 of Moving Jam Emergence 321
 12.1 Introduction ... 321
 12.2 Pinch Effect in Synchronized Flow 321
 12.2.1 Narrow Moving Jam Emergence 323
 12.2.2 Wide Moving Jam Emergence (S→J Transition) 328
 12.2.3 Correlation of Characteristics for Pinch Region
 and Wide Moving Jams 332
 12.2.4 Frequency of Narrow Moving Jam Emergence 332
 12.2.5 Saturation and Dynamic Features of Pinch Effect .. 334
 12.2.6 Spatial Dependence of Speed Correlation Function . 335
12.2.7 Effect of Wide Moving Jam Emergence in Pinch Region of General Pattern 337
12.3 Strong and Weak Congestion .. 337
12.4 Moving Jam Emergence in Synchronized Flow Away from Bottlenecks 340
12.5 Pattern Formation at Off-Ramp Bottlenecks 343
12.6 Induced F→J Transition ... 344
12.7 Conclusions .. 348

13 Empirical Pattern Evolution and Transformation at Isolated Bottlenecks 349
13.1 Introduction .. 349
13.2 Evolution of General Patterns at On-Ramp Bottlenecks 350
13.2.1 Transformation of General Pattern into Synchronized Flow Pattern 350
13.2.2 Alternation of Free Flow and Synchronized Flow in Congested Patterns 350
13.2.3 Hysteresis Effects Due to Pattern Formation and Dissolution 352
13.3 Transformations of Congested Patterns Under Weak Congestion 354
13.4 Discharge Flow Rate and Capacity Drop 357
13.5 Conclusions .. 363

14 Empirical Complex Pattern Formation Caused by Peculiarities of Freeway Infrastructure 365
14.1 Introduction .. 365
14.2 Expanded Congested Pattern ... 366
14.2.1 Common Features .. 366
14.2.2 Example of Expanded Congested Pattern 367
14.3 Dissolution of Moving Jams at Bottlenecks ... 369
14.3.1 Dynamics of Wide Moving Jam Outflow 369
14.3.2 Localized Synchronized Flow Patterns Resulting from Moving Jam Dissolution 371
14.4 Conclusions .. 372

15 Dependence of Empirical Fundamental Diagram on Congested Pattern Features 373
15.1 Introduction .. 373
15.1.1 Empirical Fundamental Diagram and Steady State Model Solutions 373
15.1.2 Two Branches of Empirical Fundamental Diagram 374
15.1.3 Line J and Wide Moving Jam Outflow 375
15.2 Empirical Fundamental Diagram
and Line J 378
15.2.1 Asymptotic Behavior of Empirical
Fundamental Diagrams 378
15.2.2 Influence of Different Vehicle Characteristics
on Fundamental Diagrams 383
15.3 Dependence of Empirical Fundamental Diagram
on Congested Pattern Type 385
15.4 Explanation of Reversed-λ, Inverted-V,
and Inverted-U Empirical Fundamental Diagrams 392
15.5 Conclusions 394

Part III Microscopic Three-Phase Traffic Theory

16 Microscopic Traffic Flow Models
for Spatiotemporal Congested Patterns 399
16.1 Introduction 399
16.2 Cellular Automata Approach to Three-Phase Traffic Theory . 401
16.2.1 General Rules of Vehicle Motion 401
16.2.2 Synchronization Distance 402
16.2.3 Steady States 403
16.2.4 Fluctuations of Acceleration and Deceleration
in Cellular Automata Models 405
16.2.5 Boundary Conditions and Model of On-Ramp 407
16.2.6 Summary of Model Equations and Parameters 408
16.3 Continuum in Space Model Approach
to Three-Phase Traffic Theory 408
16.3.1 Vehicle Motion Rules 408
16.3.2 Speed Adaptation Effect Within Synchronization
Distance 409
16.3.3 Motion State Model for Random Acceleration
and Deceleration 411
16.3.4 Safe Speed 413
16.3.5 2D Region of Steady States 414
16.3.6 Physics of Driver Time Delays 415
16.3.7 Over-Acceleration and Over-Deceleration Effects 419
16.3.8 Lane Changing Rules 420
16.3.9 Boundary Conditions and Models of Bottlenecks 421
16.3.10 Summary of Model Equations and Parameters 425
16.4 Conclusions 431

17 Microscopic Theory of Phase Transitions
in Freeway Traffic 433
17.1 Introduction 433
17.2 Microscopic Theory of Breakdown Phenomenon
(F→S Transition) ... 434
17.2.1 Homogeneous Road 434
17.2.2 Breakdown Phenomenon at On-Ramp Bottlenecks 438
17.3 Moving Jam Emergence and Double Z-Shaped
Characteristics of Traffic Flow 442
17.3.1 F→J Transition on Homogeneous Road 442
17.3.2 S→J Transition on Homogeneous Road 443
17.3.3 Moving Jam Emergence in Synchronized
Flow Upstream of Bottlenecks 445
17.4 Conclusions ... 448

18 Congested Patterns at Isolated Bottlenecks 449
18.1 Introduction ... 449
18.2 Diagram of Congested Patterns
at Isolated On-Ramp Bottlenecks 450
18.2.1 Synchronized Flow Patterns 450
18.2.2 Single Vehicle Characteristics in Synchronized Flow 454
18.2.3 Maximum Freeway Capacities
and Limit Point in Diagram 458
18.2.4 Pinch Effect in General Patterns 458
18.2.5 Peculiarities of General Patterns 462
18.3 Weak and Strong Congestion
in General Patterns 464
18.3.1 Criteria for Strong and Weak Congestion 464
18.3.2 Strong Congestion Features 467
18.4 Evolution of Congested Patterns
at On-Ramp Bottlenecks 469
18.5 Hysteresis and Nucleation Effects by Pattern
Formation at On-Ramp Bottlenecks 471
18.5.1 Threshold Boundary for Synchronized Flow Patterns 471
18.5.2 Threshold Boundary for General Patterns 475
18.5.3 Overlap of Different Metastable Regions
and Multiple Pattern Excitation 476
18.6 Strong Congestion at Merge Bottlenecks 477
18.6.1 Comparison of General Patterns at Merge Bottleneck and at On-Ramp Bottleneck 477
18.6.2 Diagram of Congested Patterns 478
18.7 Weak Congestion at Off-Ramp Bottlenecks 480
18.7.1 Diagram of Congested Patterns 480
18.7.2 Comparison of Pattern Features
at Various Bottlenecks 480
18.8 Congested Pattern Capacity
at On-Ramp Bottlenecks 483
XVI Contents

18.8.1 Transformations of Congested Patterns at On-Ramp Bottlenecks .. 483
18.8.2 Temporal Evolution of Discharge Flow Rate 486
18.8.3 Dependence of Congested Pattern Capacity on On-Ramp Inflow .. 490
18.9 Conclusions .. 492

19 Complex Congested Pattern Interaction and Transformation .. 495
19.1 Introduction .. 495
19.2 Catch Effect and Induced Congested Pattern Formation ... 496
19.2.1 Induced Pattern Emergence .. 496
19.3 Complex Congested Patterns and Pattern Interaction ... 498
19.3.1 Foreign Wide Moving Jams 498
19.3.2 Expanded Congested Patterns 501
19.4 Intensification of Downstream Congestion Due to Upstream Congestion 504
19.5 Conclusions .. 507

20 Spatiotemporal Patterns in Heterogeneous Traffic Flow ... 509
20.1 Introduction .. 509
20.2 Microscopic Two-Lane Model for Heterogeneous Traffic Flow with Various Driver Behavioral Characteristics and Vehicle Parameters .. 510
20.2.1 Single-Lane Model ... 510
20.2.2 Two-Lane Model ... 512
20.2.3 Boundary, Initial Conditions, and Model of Bottleneck .. 514
20.2.4 Simulation Parameters ... 515
20.3 Patterns in Heterogeneous Traffic Flow with Different Driver Behavioral Characteristics ... 515
20.3.1 Vehicle Separation Effect in Free Flow ... 515
20.3.2 Onset of Congestion in Free Flow on Homogeneous Road .. 516
20.3.3 Lane Asymmetric Emergence of Moving Synchronized Flow Patterns .. 519
20.3.4 Congested Patterns at On-Ramp Bottlenecks ... 519
20.3.5 Wide Moving Jam Propagation ... 525
20.4 Patterns in Heterogeneous Traffic Flow with Different Vehicle Parameters ... 528
20.4.1 Peculiarity of Wide Moving Jam Propagation ... 530
20.4.2 Partial Destroying of Speed Synchronization ... 533
Contents

20.4.3 Extension of Free Flow Recovering and Vehicle Separation 533
20.5 Weak Heterogeneous Flow .. 535
 20.5.1 Spontaneous Onset of Congestion Away from Bottlenecks 535
 20.5.2 Lane Asymmetric Free Flow Distributions 537
20.6 Characteristics of Congested Pattern Propagation in Heterogeneous Traffic Flow 538
 20.6.1 Velocity of Downstream Jam Front 538
 20.6.2 Flow Rate in Jam Outflow 540
 20.6.3 Velocity of Downstream Front of Moving Synchronized Flow Patterns 541
20.7 Conclusions .. 542

Part IV Engineering Applications

21 ASDA and FOTO Models of Spatiotemporal Pattern Dynamics based on Local Traffic Flow Measurements 547
 21.1 Introduction .. 547
 21.2 Identification of Traffic Phases 548
 21.3 Determination of Traffic Phases with FOTO Model 550
 21.3.1 Fuzzy Rules for FOTO Model 551
 21.4 Tracking Moving Jams with ASDA: Simplified Discussion 554
 21.4.1 Tracking Synchronized Flow with FOTO Model 557
 21.4.2 ASDA-Like Approach to Tracking Synchronized Flow 559
 21.4.3 Cumulative Flow Rate Approach to Tracking Synchronized Flow 560
 21.5 Conclusions .. 561

22 Spatiotemporal Pattern Recognition, Tracking, and Prediction .. 563
 22.1 Introduction .. 563
 22.2 FOTO and ASDA Application for Congested Pattern Recognition and Tracking 563
 22.2.1 Validation of FOTO and ASDA Models at Traffic Control Center of German Federal State of Hessen 563
 22.2.2 Application of FOTO and ASDA Models on Other Freeways in Germany and USA 565
 22.3 Spatiotemporal Pattern Prediction 568
 22.3.1 Historical Time Series 568
23 Control of Spatiotemporal Congested Patterns

23.1 Introduction

23.2 Scenarios for Traffic Management and Control

23.3 Spatiotemporal Pattern Control
 Through Ramp Metering
 23.3.1 Free Flow Control Approach
 23.3.2 Congested Pattern Control Approach
 23.3.3 Comparison of Free Flow and Congested Pattern Control Approaches
 23.3.4 Comparison of Different Control Rules in Congested Pattern Control Approach

23.4 Dissolution of Congested Patterns

23.5 Prevention of Induced Congestion

23.6 Influence of Automatic Cruise Control
 on Congested Patterns
 23.6.1 Model of Automatic Cruise Control
 23.6.2 Automatic Cruise Control with Quick Dynamic Adaptation
 23.6.3 Automatic Cruise Control with Slow Dynamic Adaptation

23.7 Conclusions

24 Conclusion

A Terms and Definitions
 A.1 Traffic States, Parameters, and Variables
 A.2 Traffic Phases
 A.3 Phase Transitions
 A.4 Bottleneck Characteristics
 A.5 Congested Patterns at Bottlenecks
 A.6 Local Perturbations
 A.7 Critical and Threshold Traffic Variables
 A.8 Some Features of Phase Transitions and Traffic State Stability
Contents XIX

B ASDA and FOTO Models
 for Practical Applications 641
 B.1 ASDA Model for Several Road Detectors 641
 B.1.1 Extensions of ASDA for On-Ramps, Off-Ramps,
 and Changing of Number of Freeway Lanes
 Upstream of Moving Jam 643
 B.1.2 Extensions of ASDA for On-Ramps, Off-Ramps,
 and Changing of Number of Freeway Lanes
 Downstream of Moving Jam 645
 B.1.3 FOTO Model for Several Road Detectors 646
 B.1.4 Extended Rules for FOTO Model 646
 B.2 Statistical Evaluation of Different
 Reducer Detector Configurations 651

References .. 655

Index .. 679
The Physics of Traffic
Empirical Freeway Pattern Features, Engineering Applications, and Theory
Kerner, B.S.
2004, XXIII, 682 p., Hardcover
ISBN: 978-3-540-20716-0