Contents

1 Introduction .. 1

Part I Historical Overview
and Three-Phase Traffic Theory

2 Spatiotemporal Pattern Formation
in Freeway Traffic 13
 2.1 Introduction .. 13
 2.2 Traffic and Synergetics 14
 2.3 Free and Congested Traffic 15
 2.3.1 Local Measurements of Traffic Variables 15
 2.3.2 Examples of Freeway Infrastructures
 and Detector Arrangements 17
 2.3.3 Free Traffic Flow 18
 2.3.4 Congested Traffic 21
 2.3.5 Empirical Fundamental Diagram 22
 2.3.6 Complex Local Dynamics of Congested Traffic 24
 2.4 Main Empirical Features of Spatiotemporal
 Congested Patterns 27
 2.4.1 Three Traffic Phases 27
 2.4.2 Characteristic Parameters of Wide Moving Jams 28
 2.4.3 Spontaneous Breakdown Phenomenon
 (Spontaneous F→S Transition) 32
 2.4.4 Induced Breakdown Phenomenon 34
 2.4.5 Synchronized Flow Patterns 35
 2.4.6 Catch Effect 37
 2.4.7 Moving Jam Emergence in Synchronized Flow:
 General Pattern 41
 2.4.8 Expanded Congested Patterns 46
 2.4.9 Foreign Wide Moving Jams 51
 2.4.10 Reproducible and Predictable Congested Patterns . 53
 2.4.11 Methodology for Empirical Congested Pattern Study 57
 2.5 Conclusions. Fundamental Empirical Features
 of Spatiotemporal Congested Patterns 58
3 Overview of Freeway Traffic Theories and Models: Fundamental Diagram Approach 63
 3.1 Introduction:
 Hypothesis About Theoretical Fundamental Diagram 63
 3.2 Achievements of Fundamental Diagram Approach to Traffic Flow Modeling and Theory 64
 3.2.1 Conservation of Vehicle Number on Road and Front Velocity 66
 3.2.2 The Lighthill–Whitham–Richards Model and Shock Wave Theory 67
 3.2.3 Collective Flow Concept and Probability of Passing .. 68
 3.2.4 Scenarios for Moving Jam Emergence .. 69
 3.2.5 Wide Moving Jam Characteristics ... 69
 3.2.6 Flow Rate in Wide Moving Jam Outflow, The Line J ... 71
 3.2.7 Metastable States of Free Flow with Respect to Moving Jam Emergence 73
 3.3 Drawbacks of Fundamental Diagram Approach in Describing of Spatiotemporal Congested Freeway Patterns .. 78
 3.3.1 Shock Wave Theory .. 78
 3.3.2 Models and Theories of Moving Jam Emergence in Free Flow 80
 3.3.3 Models and Theories with Variety of Vehicle and Driver Characteristics 83
 3.3.4 Application of Classical Queuing Theories to Freeway Congested Traffic Patterns 84
 3.4 Conclusions .. 85

4 Basis of Three-Phase Traffic Theory ... 87
 4.1 Introduction and Remarks on Three-Phase Traffic Theory .. 87
 4.2 Definition of Traffic Phases in Congested Traffic Based on Empirical Data 88
 4.2.1 Objective Criteria for Traffic Phases in Congested Traffic ... 88
 4.2.2 Explanation of Terms “Synchronized Flow” and “Wide Moving Jam” 90
 4.2.3 Mean Vehicle Trajectories ... 91
 4.2.4 Flow Rate in Synchronized Flow ... 91
 4.2.5 Empirical Line J ... 93
 4.2.6 Propagation of Two Wide Moving Jams ... 94
 4.3 Fundamental Hypothesis of Three-Phase Traffic Theory ... 95
4.3.1 Three-Phase Traffic Theory as Driver Behavioral Theory 98
4.3.2 Synchronization Distance and Speed Adaptation Effect in Synchronized Flow 100
4.3.3 Random Transformations ("Wandering") Within Synchronized Flow States 100
4.3.4 Dynamic Synchronized Flow States 101
4.4 Empirical Basis of Three-Phase Traffic Theory 102
4.5 Conclusions .. 103

5 Breakdown Phenomenon (F→S Transition) in Three-Phase Traffic Theory 105
5.1 Introduction .. 105
5.2 Breakdown Phenomenon on Homogeneous Road 106
 5.2.1 Speed Breakdown at Limit Point of Free Flow 106
 5.2.2 Critical Local Perturbation for Speed Breakdown 108
 5.2.3 Probability for Breakdown Phenomenon 110
 5.2.4 Threshold Flow Rate and Density, Metastability, and Nucleation Effects 111
 5.2.5 Z-Shaped Speed–Density and Passing Probability Characteristics 114
 5.2.6 Physics of Breakdown Phenomenon: Competition Between Over-Acceleration and Speed Adaptation 119
 5.2.7 Physics of Threshold Point in Free Flow 120
 5.2.8 Moving Synchronized Flow Pattern 122
5.3 Breakdown Phenomenon at Freeway Bottlenecks 123
 5.3.1 Deterministic Local Perturbation 123
 5.3.2 Deterministic F→S Transition 128
 5.3.3 Physics of Deterministic Speed Breakdown at Bottleneck 133
 5.3.4 Influence of Random Perturbations 133
 5.3.5 Z-Characteristic for Speed Breakdown at Bottleneck 136
 5.3.6 Physics of Speed Breakdown at Bottleneck 139
 5.3.7 Time Delay of Speed Breakdown 140
5.4 Conclusions .. 142

6 Moving Jam Emergence in Three-Phase Traffic Theory 145
6.1 Introduction .. 145
6.2 Wide Moving Jam Emergence in Free Flow 147
6.3 Wide Moving Jam Emergence in Synchronized Flow 150
 6.3.1 Hypothesis for Moving Jam Emergence in Synchronized Flow 150
 6.3.2 Features of Metastable Synchronized Flow States 155
 6.3.3 Stable High Density Synchronized Flow States 156
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Double Z-Shaped Traffic Flow Characteristics</td>
<td>158</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Z-Characteristic for S→J Transition</td>
<td>158</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Cascade of Two Phase Transitions (F→S→J Transitions)</td>
<td>161</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Wide Moving Jam Emergence Within Initial Moving Synchronized Flow Pattern</td>
<td>167</td>
</tr>
<tr>
<td>6.5</td>
<td>Moving Jam Emergence</td>
<td></td>
</tr>
<tr>
<td>6.5.1</td>
<td>Why Moving Jams Do not Emerge in Free Flow at Bottlenecks</td>
<td>169</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Z-Characteristic for S→J Transition at Bottlenecks</td>
<td>171</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Physics of Moving Jam Emergence in Synchronized Flow</td>
<td>172</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Double Z-Characteristic and F→S→J Transitions at Bottlenecks</td>
<td>176</td>
</tr>
<tr>
<td>6.6</td>
<td>Conclusions</td>
<td>178</td>
</tr>
<tr>
<td>7</td>
<td>Congested Patterns at Freeway Bottlenecks in Three-Phase Traffic Theory</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>179</td>
</tr>
<tr>
<td>7.2</td>
<td>Two Main Types</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of Spatiotemporal Congested Patterns</td>
<td>179</td>
</tr>
<tr>
<td>7.3</td>
<td>Simplified Diagram of Congested Patterns</td>
<td>180</td>
</tr>
<tr>
<td>7.4</td>
<td>Synchronized Flow Patterns</td>
<td>183</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Influence of Fluctuations on Limit Point for Free Flow at Bottlenecks</td>
<td>183</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Moving Synchronized Flow Pattern Emergence at Bottlenecks</td>
<td>185</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Pinning of Downstream Front of Synchronized Flow at Bottlenecks</td>
<td>189</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Transformation Between Widening and Localized Synchronized Flow Patterns</td>
<td>192</td>
</tr>
<tr>
<td>7.5</td>
<td>General Patterns</td>
<td>194</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Spatiotemporal Structure of General Patterns</td>
<td>194</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Dissolving General Pattern and Pattern Transformation</td>
<td>198</td>
</tr>
<tr>
<td>7.6</td>
<td>Physics of General Patterns</td>
<td>200</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Region of Wide Moving Jams</td>
<td>200</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Narrow Moving Jam Emergence in Pinch Region</td>
<td>204</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Moving Jam Suppression Effect</td>
<td>209</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Width of Pinch Region</td>
<td>210</td>
</tr>
<tr>
<td>7.6.5</td>
<td>Wide Moving Jam Propagation Through Bottlenecks</td>
<td>211</td>
</tr>
<tr>
<td>7.7</td>
<td>Conclusions</td>
<td>213</td>
</tr>
</tbody>
</table>
8 Freeway Capacity in Three-Phase Traffic Theory 217
 8.1 Introduction .. 217
 8.2 Homogeneous Road .. 217
 8.3 Freeway Capacity in Free Flow at Bottlenecks 218
 8.3.1 Definition of Freeway Capacity 218
 8.3.2 Probability for Speed Breakdown at Bottlenecks 220
 8.3.3 Threshold Boundary for Speed Breakdown 223
 8.3.4 Features of Freeway Capacity at Bottlenecks 226
 8.4 Z-Characteristic and Probability for Speed Breakdown 228
 8.5 Congested Pattern Capacity at Bottlenecks 232
 8.6 Main Behavioral Assumptions of Three-Phase Traffic Theory 234
 8.7 Conclusions .. 237

Part II Empirical Spatiotemporal Congested Traffic Patterns

9 Empirical Congested Patterns at Isolated Bottlenecks 241
 9.1 Introduction .. 241
 9.2 Effectual Bottlenecks and Effective Locations
 of Bottlenecks ... 242
 9.2.1 Effectual Bottlenecks on Freeway A5-South 244
 9.2.2 Effectual Bottlenecks on Freeway A5-North 247
 9.2.3 Isolated Effectual Bottleneck 247
 9.3 Empirical Synchronized Flow Patterns 250
 9.3.1 Widening Synchronized Flow Pattern 250
 9.3.2 Localized Synchronized Flow Pattern 255
 9.3.3 Moving Synchronized Flow Pattern 256
 9.4 Empirical General Patterns .. 259
 9.4.1 Empirical General Pattern of Type (1) 259
 9.4.2 Empirical General Pattern of Type (2) 262
 9.4.3 Dependence of Effective Location
 of Bottleneck on Time .. 264
 9.5 Conclusions .. 268

10 Empirical Breakdown Phenomenon:
 Phase Transition from Free Flow to Synchronized Flow 269
 10.1 Introduction .. 269
 10.2 Spontaneous Breakdown Phenomenon
 (Spontaneous F→S Transition) at On-Ramp Bottlenecks 270
10.3 Probability for $F \rightarrow S$ Transition ... 274
 10.3.1 Empirical and Theoretical Definitions
 of Freeway Capacities at Bottlenecks 275
 10.3.2 Pre-Discharge Flow Rate ... 278
10.4 Induced Speed Breakdown
 at On-Ramp Bottlenecks ... 281
 10.4.1 $F \rightarrow S$ Transition Induced by Wide Moving Jam
 Propagation Through Effectual Bottleneck 282
 10.4.2 Induced Speed Breakdown at Bottlenecks
 Caused by Synchronized Flow Propagation 282
10.5 Breakdown Phenomenon at Off-Ramp Bottlenecks 285
10.6 Breakdown Phenomenon Away from Bottlenecks 289
10.7 Some Empirical Features of Synchronized Flow 294
 10.7.1 Complex Behavior in Flow–Density Plane 294
 10.7.2 Three Types of Synchronized Flow 296
 10.7.3 Overlapping States of Free Flow
 and Synchronized Flow in Density 299
 10.7.4 Analysis of Individual Vehicle Speeds 302
10.8 Conclusions ... 302

11 Empirical Features
 of Wide Moving Jam Propagation .. 305
 11.1 Introduction .. 305
 11.2 Characteristic Parameters of Wide Moving Jams 305
 11.2.1 Empirical Determination of Line J 306
 11.2.2 Dependence of Characteristic Jam Parameters
 on Traffic Conditions .. 310
 11.2.3 Propagation of Wide Moving Jams
 Through Synchronized Flow 311
 11.2.4 Moving Blanks Within Wide Moving Jams 314
 11.3 Features of Foreign Wide Moving Jams 316
 11.4 Conclusions .. 318

12 Empirical Features
 of Moving Jam Emergence .. 321
 12.1 Introduction .. 321
 12.2 Pinch Effect in Synchronized Flow 321
 12.2.1 Narrow Moving Jam Emergence 323
 12.2.2 Wide Moving Jam Emergence ($S \rightarrow J$ Transition) 328
 12.2.3 Correlation of Characteristics for Pinch Region
 and Wide Moving Jams .. 332
 12.2.4 Frequency of Narrow Moving Jam Emergence 332
 12.2.5 Saturation and Dynamic Features of Pinch Effect 334
 12.2.6 Spatial Dependence of Speed Correlation Function 335
12.2.7 Effect of Wide Moving Jam Emergence in Pinch Region of General Pattern 337
12.3 Strong and Weak Congestion .. 337
12.4 Moving Jam Emergence in Synchronized Flow Away from Bottlenecks 340
12.5 Pattern Formation at Off-Ramp Bottlenecks ... 343
12.6 Induced F→J Transition .. 344
12.7 Conclusions ... 348

13 Empirical Pattern Evolution and Transformation at Isolated Bottlenecks 349
13.1 Introduction ... 349
13.2 Evolution of General Patterns at On-Ramp Bottlenecks .. 350
 13.2.1 Transformation of General Pattern into Synchronized Flow Pattern 350
 13.2.2 Alternation of Free Flow and Synchronized Flow in Congested Patterns 350
 13.2.3 Hysteresis Effects Due to Pattern Formation and Dissolution 352
13.3 Transformations of Congested Patterns Under Weak Congestion 354
13.4 Discharge Flow Rate and Capacity Drop ... 357
13.5 Conclusions ... 363

14 Empirical Complex Pattern Formation Caused by Peculiarities of Freeway Infrastructure 365
14.1 Introduction ... 365
14.2 Expanded Congested Pattern .. 366
 14.2.1 Common Features ... 366
 14.2.2 Example of Expanded Congested Pattern ... 367
14.3 Dissolution of Moving Jams at Bottlenecks ... 369
 14.3.1 Dynamics of Wide Moving Jam Outflow .. 369
 14.3.2 Localized Synchronized Flow Patterns Resulting from Moving Jam Dissolution 371
14.4 Conclusions ... 372

15 Dependence of Empirical Fundamental Diagram on Congested Pattern Features 373
15.1 Introduction ... 373
 15.1.1 Empirical Fundamental Diagram and Steady State Model Solutions 373
 15.1.2 Two Branches of Empirical Fundamental Diagram 374
 15.1.3 Line J and Wide Moving Jam Outflow ... 375
XIV Contents

15.2 Empirical Fundamental Diagram and Line J 378
 15.2.1 Asymptotic Behavior of Empirical Fundamental Diagrams 378
 15.2.2 Influence of Different Vehicle Characteristics on Fundamental Diagrams 383
15.3 Dependence of Empirical Fundamental Diagram on Congested Pattern Type 385
15.4 Explanation of Reversed-λ, Inverted-V, and Inverted-U Empirical Fundamental Diagrams 392
15.5 Conclusions 394

Part III Microscopic Three-Phase Traffic Theory

16 Microscopic Traffic Flow Models for Spatiotemporal Congested Patterns 399
 16.1 Introduction .. 399
 16.2 Cellular Automata Approach to Three-Phase Traffic Theory 401
 16.2.1 General Rules of Vehicle Motion .. 401
 16.2.2 Synchronization Distance .. 402
 16.2.3 Steady States .. 403
 16.2.4 Fluctuations of Acceleration and Deceleration in Cellular Automata Models 405
 16.2.5 Boundary Conditions and Model of On-Ramp .. 407
 16.2.6 Summary of Model Equations and Parameters .. 408
 16.3 Continuum in Space Model Approach to Three-Phase Traffic Theory 408
 16.3.1 Vehicle Motion Rules .. 408
 16.3.2 Speed Adaptation Effect Within Synchronization Distance .. 409
 16.3.3 Motion State Model for Random Acceleration and Deceleration .. 411
 16.3.4 Safe Speed .. 413
 16.3.5 2D Region of Steady States .. 414
 16.3.6 Physics of Driver Time Delays .. 415
 16.3.7 Over-Acceleration and Over-Deceleration Effects .. 419
 16.3.8 Lane Changing Rules .. 420
 16.3.9 Boundary Conditions and Models of Bottlenecks .. 421
 16.3.10 Summary of Model Equations and Parameters .. 425
 16.4 Conclusions .. 431

17 Microscopic Theory of Phase Transitions in Freeway Traffic .. 433
 17.1 Introduction .. 433
17.2 Microscopic Theory of Breakdown Phenomenon
 (F→S Transition) .. 434
17.2.1 Homogeneous Road 434
17.2.2 Breakdown Phenomenon at On-Ramp Bottlenecks 438

17.3 Moving Jam Emergence and Double Z-Shaped
 Characteristics of Traffic Flow 442
17.3.1 F→J Transition on Homogeneous Road 442
17.3.2 S→J Transition on Homogeneous Road 443
17.3.3 Moving Jam Emergence in Synchronized
 Flow Upstream of Bottlenecks 445

17.4 Conclusions ... 448

18 Congested Patterns at Isolated Bottlenecks 449
18.1 Introduction .. 449
18.2 Diagram of Congested Patterns
 at Isolated On-Ramp Bottlenecks 450
18.2.1 Synchronized Flow Patterns 450
18.2.2 Single Vehicle Characteristics in Synchronized Flow . 454
18.2.3 Maximum Freeway Capacities
 and Limit Point in Diagram 458
18.2.4 Pinch Effect in General Patterns 458
18.2.5 Peculiarities of General Patterns 462
18.3 Weak and Strong Congestion
 in General Patterns 464
18.3.1 Criteria for Strong and Weak Congestion 464
18.3.2 Strong Congestion Features 467
18.4 Evolution of Congested Patterns
 at On-Ramp Bottlenecks 469
18.5 Hysteresis and Nucleation Effects by Pattern
 Formation at On-Ramp Bottlenecks 471
18.5.1 Threshold Boundary for Synchronized Flow Patterns 471
18.5.2 Threshold Boundary for General Patterns 475
18.5.3 Overlap of Different Metastable Regions
 and Multiple Pattern Excitation 476
18.6 Strong Congestion at Merge Bottlenecks 477
18.6.1 Comparison of General Patterns at Merge Bottleneck
 and at On-Ramp Bottleneck 477
18.6.2 Diagram of Congested Patterns 478
18.7 Weak Congestion at Off-Ramp Bottlenecks 480
18.7.1 Diagram of Congested Patterns 480
18.7.2 Comparison of Pattern Features
 at Various Bottlenecks 480
18.8 Congested Pattern Capacity
 at On-Ramp Bottlenecks 483
18.8.1 Transformations of Congested Patterns at On-Ramp Bottlenecks 483
18.8.2 Temporal Evolution of Discharge Flow Rate .. 486
18.8.3 Dependence of Congested Pattern Capacity on On-Ramp Inflow 490
18.9 Conclusions .. 492

19 Complex Congested Pattern Interaction and Transformation .. 495
19.1 Introduction ... 495
19.2 Catch Effect and Induced Congested Pattern Formation .. 496
19.2.1 Induced Pattern Emergence .. 496
19.3 Complex Congested Patterns and Pattern Interaction .. 498
19.3.1 Foreign Wide Moving Jams .. 498
19.3.2 Expanded Congested Patterns ... 501
19.4 Intensification of Downstream Congestion Due to Upstream Congestion 504
19.5 Conclusions ... 507

20 Spatiotemporal Patterns in Heterogeneous Traffic Flow .. 509
20.1 Introduction ... 509
20.2 Microscopic Two-Lane Model for Heterogeneous Traffic Flow with Various Driver Behavioral Characteristics and Vehicle Parameters ... 510
 20.2.1 Single-Lane Model ... 510
 20.2.2 Two-Lane Model ... 512
 20.2.3 Boundary, Initial Conditions, and Model of Bottleneck 514
 20.2.4 Simulation Parameters .. 515
20.3 Patterns in Heterogeneous Traffic Flow with Different Driver Behavioral Characteristics ... 515
 20.3.1 Vehicle Separation Effect in Free Flow .. 515
 20.3.2 Onset of Congestion in Free Flow on Homogeneous Road 516
 20.3.3 Lane Asymmetric Emergence of Moving Synchronized Flow Patterns 519
 20.3.4 Congested Patterns at On-Ramp Bottlenecks .. 519
 20.3.5 Wide Moving Jam Propagation ... 525
20.4 Patterns in Heterogeneous Traffic Flow with Different Vehicle Parameters 528
 20.4.1 Peculiarity of Wide Moving Jam Propagation ... 530
 20.4.2 Partial Destroying of Speed Synchronization .. 533
21.4.3 Extension of Free Flow Recovering and Vehicle Separation

20.5 Weak Heterogeneous Flow

20.5.1 Spontaneous Onset of Congestion Away from Bottlenecks

20.5.2 Lane Asymmetric Free Flow Distributions

20.6 Characteristics of Congested Pattern Propagation in Heterogeneous Traffic Flow

20.6.1 Velocity of Downstream Jam Front

20.6.2 Flow Rate in Jam Outflow

20.6.3 Velocity of Downstream Front of Moving Synchronized Flow Patterns

20.7 Conclusions

Part IV Engineering Applications

21 ASDA and FOTO Models of Spatiotemporal Pattern Dynamics based on Local Traffic Flow Measurements

21.1 Introduction

21.2 Identification of Traffic Phases

21.3 Determination of Traffic Phases with FOTO Model

21.4 Tracking Moving Jams with ASDA:

21.4.1 Tracking Synchronized Flow with FOTO Model

21.4.2 ASDA-Like Approach to Tracking Synchronized Flow

21.4.3 Cumulative Flow Rate Approach to Tracking Synchronized Flow

21.5 Conclusions

22 Spatiotemporal Pattern Recognition, Tracking, and Prediction

22.1 Introduction

22.2 FOTO and ASDA Application for Congested Pattern Recognition and Tracking

22.2.1 Validation of FOTO and ASDA Models at Traffic Control Center of German Federal State of Hessen

22.2.2 Application of FOTO and ASDA Models on Other Freeways in Germany and USA

22.3 Spatiotemporal Pattern Prediction

22.3.1 Historical Time Series
22.3.2 Database of Reproducible and Predictable Spatiotemporal Pattern Features 575
22.3.3 Vehicle Onboard Autonomous Spatiotemporal Congested Pattern Prediction 580
22.4 Traffic Analysis and Prediction in Urban Areas 582
 22.4.1 Model for Traffic Prediction in City Networks 582
 22.5 Conclusions .. 589

23 Control of Spatiotemporal Congested Patterns 591
 23.1 Introduction .. 591
 23.2 Scenarios for Traffic Management and Control 592
 23.3 Spatiotemporal Pattern Control
 Through Ramp Metering 593
 23.3.1 Free Flow Control Approach 595
 23.3.2 Congested Pattern Control Approach 606
 23.3.3 Comparison of Free Flow and Congested Pattern Control Approaches 610
 23.3.4 Comparison of Different Control Rules
 in Congested Pattern Control Approach 614
 23.4 Dissolution of Congested Patterns 617
 23.5 Prevention of Induced Congestion 620
 23.6 Influence of Automatic Cruise Control
 on Congested Patterns .. 624
 23.6.1 Model of Automatic Cruise Control 624
 23.6.2 Automatic Cruise Control
 with Quick Dynamic Adaptation 626
 23.6.3 Automatic Cruise Control
 with Slow Dynamic Adaptation 628
 23.7 Conclusions .. 629

24 Conclusion ... 631

A Terms and Definitions .. 633
 A.1 Traffic States, Parameters, and Variables 633
 A.2 Traffic Phases ... 633
 A.3 Phase Transitions .. 634
 A.4 Bottleneck Characteristics 635
 A.5 Congested Patterns at Bottlenecks 636
 A.6 Local Perturbations .. 637
 A.7 Critical and Threshold Traffic Variables 637
 A.8 Some Features of Phase Transitions
 and Traffic State Stability 638
B ASDA and FOTO Models
 for Practical Applications 641
 B.1 ASDA Model for Several Road Detectors 641
 B.1.1 Extensions of ASDA for On-Ramps, Off-Ramps,
 and Changing of Number of Freeway Lanes
 Upstream of Moving Jam 643
 B.1.2 Extensions of ASDA for On-Ramps, Off-Ramps,
 and Changing of Number of Freeway Lanes
 Downstream of Moving Jam 645
 B.1.3 FOTO Model for Several Road Detectors 646
 B.1.4 Extended Rules for FOTO Model 646
 B.2 Statistical Evaluation of Different
 Reduced Detector Configurations 651

References .. 655

Index ... 679
The Physics of Traffic
Empirical Freeway Pattern Features, Engineering Applications, and Theory
Kerner, B.S.
2004, XXIII, 682 p., Hardcover
ISBN: 978-3-540-20716-0