Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
</tbody>
</table>

1 Probabilistic Neural Networks in a Non-stationary Environment | 7 |

2 Kernel Functions for Construction of Probabilistic Neural Networks | 9 |
2.1	Introduction	9
2.2	Application of the Parzen kernel	9
2.3	Application of the orthogonal series	11
2.4	Concluding remarks	19

3 Introduction to Probabilistic Neural Networks | 21 |
3.1	Introduction	21
3.2	Probabilistic neural networks for density estimation	23
3.3	General regression neural networks in a stationary environment	37
viii Contents

3.4 Probabilistic neural networks for pattern classification in a stationary environment 48
3.5 Concluding remarks 56

4 General Learning Procedure in a Time-Varying Environment 59
4.1 Introduction 59
4.2 Problem description 60
4.3 Presentation of the general learning procedure 60
4.4 Convergence of general learning procedure 63
4.4.1 Local properties 64
4.4.2 Global properties 65
4.4.3 Speed of convergence 67
4.5 Quasi-stationary environment 68
4.6 Problem of prediction 69
4.7 Concluding remarks 70

5 Generalized Regression Neural Networks in a Time-Varying Environment 73
5.1 Introduction 73
5.2 Problem description and presentation of the GRNN 77
5.3 Convergence of the GRNN in a time-varying environment 78
5.3.1 The GRNN based on Parzen kernels 80
5.3.2 The GRNN based on the orthogonal series 85
5.4 Speed of convergence 91
5.5 Modelling of systems with multiplicative non-stationarity 93
5.6 Modelling of systems with additive non-stationarity 109
5.7 Modelling of systems with non-stationarity of the "scale change" and "movable argument" type 115
5.8 Modelling of systems with a diminishing non-stationarity 126
5.9 Concluding remarks 131

6 Probabilistic Neural Networks for Pattern Classification in a Time-Varying Environment 135
6.1 Introduction 135
6.2 Problem description and presentation of classification rules

- Page 137

6.3 Asymptotic optimality of classification rules

- Page 140

6.4 Speed of convergence of classification rules

- Page 143

6.5 Classification procedures based on the Parzen kernels

- Page 144

6.6 Classification procedures based on the orthogonal series

- Page 146

6.7 Non-stationarity of the "movable argument" type

- Page 149

6.8 Classification in the case of a quasi-stationary environment

- Page 153

6.9 Simulation results

- **6.9.1** PNN for estimation of a time-varying probability density
- Page 156
- **6.9.2** PNN for classification in a time-varying environment
- Page 164

6.10 Concluding remarks

- Page 166

II Soft Computing Techniques for Image Compression

7 Vector Quantization for Image Compression

- **7.1** Introduction
- Page 169
- **7.2** Preprocessing
- Page 169
- **7.3** Problem description
- Page 173
- **7.4** VQ algorithm based on neural network
- Page 175
- **7.5** Concluding remarks
- Page 177

8 The DPCM Technique

- **8.1** Introduction
- Page 179
- **8.2** Scalar case
- Page 179
- **8.3** Vector case
- Page 182
- **8.4** Application of neural network
- Page 182
- **8.5** Concluding remarks
- Page 184

9 The PVQ Scheme

- **9.1** Introduction
- Page 185
- **9.2** Description of the PVQ scheme
- Page 185
- **9.3** Concluding remarks
- Page 191
New Soft Computing Techniques for System Modeling, Pattern Classification and Image Processing
Rutkowski, L.
2004, XI, 374 p., Hardcover
ISBN: 978-3-540-20584-5