Survey and Summary
A Nomenclature for Restriction Enzymes,
DNA Methyltransferases, Homing Endonucleases and Their Genes

1 Introduction ... 3
2 General Rules ... 3
3 Details of Types and Subtypes 6
3.1 Types I, II, III and IV 6
3.2 Type I .. 6
3.3 Type II .. 7
3.4 Type IIP ... 8
3.5 Type IIA ... 10
3.6 Type IIB ... 10
3.7 Type IIC ... 11
3.8 Type IIE ... 11
3.9 Type IIF ... 11
3.10 Type IIG .. 11
3.11 Type IHI .. 12
3.12 Type IIM .. 12
3.13 Type IIS .. 12
Restriction-Modification Systems as Minimal Forms of Life

I. Kobayashi

1 Introduction .. 19
2 Genomics and Mobility of Restriction-Modification Systems 22
 2.1 Genomics .. 22
 2.2 Horizontal Gene Transfer Inferred
 from Evolutionary Analyses 23
 2.3 Presence on Mobile Genetic Elements 23
 2.4 Genomic Contexts and Genome Comparison 23
 2.4.1 Insertion into an Operon-Like Gene Cluster 26
 2.4.2 Insertion with Long Target Duplication 27
 2.4.3 Substitution Adjacent to a Large Inversion 27
 2.4.4 Apparent Transposition 27
 2.4.5 Linkage of a Restriction-Modification Gene Complex
 with Another Restriction-Modification Gene Complex
 or a Cell Death-Related Gene 27
 2.5 Defective Restriction-Modification Gene Complexes 27
3 Attack on the Host Genome and the Selfish
 Gene Hypothesis ... 28
 3.1 Post-Segregational Host Cell Killing 28
 3.2 Comparison with other Post-Segregational
 Cell Killing Systems 29
 3.3 Selfish Gene Hypothesis 32
 3.4 Genomics as Explained by the Selfish Gene Hypothesis 33
4 Gene Regulation in the Life Cycle
 of Restriction-Modification Systems 34
 4.1 Gene Organization .. 36
 4.2 Gene Regulation .. 37
 4.2.1 Restriction Gene Downstream of Modification Gene 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2 Restriction Gene Upstream of Modification Gene</td>
<td>37</td>
</tr>
<tr>
<td>4.2.3 Modification Enzyme as a Regulator</td>
<td>37</td>
</tr>
<tr>
<td>4.2.4 Regulatory Proteins</td>
<td>38</td>
</tr>
<tr>
<td>4.2.5 Type I Restriction-Modification Systems</td>
<td>38</td>
</tr>
<tr>
<td>4.3 Restriction-Modification Gene Complexes May Be Able to Multiply</td>
<td>39</td>
</tr>
<tr>
<td>themselves</td>
<td></td>
</tr>
<tr>
<td>5 Intra-Genomic Competition Involving Restriction-Modification Gene</td>
<td>40</td>
</tr>
<tr>
<td>Complexes</td>
<td></td>
</tr>
<tr>
<td>5.1 Two Restriction-Modification Systems with the Same Recognition</td>
<td>40</td>
</tr>
<tr>
<td>Sequence Can Block the Post-Segregational Killing Potential of Each</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>5.2 Solitary Methyltransferases Can Attenuate the Post-Segregational</td>
<td>42</td>
</tr>
<tr>
<td>Killing Activity of Restriction-Modification Systems</td>
<td></td>
</tr>
<tr>
<td>5.3 Resident Restriction-Modification Systems Can Abort the Establishment</td>
<td>42</td>
</tr>
<tr>
<td>of a Similar Incoming Restriction-Modification System</td>
<td></td>
</tr>
<tr>
<td>5.4 Suicidal Defense Against Restriction-Modification Gene Complexes</td>
<td>43</td>
</tr>
<tr>
<td>5.5 Defense Against Invaders by Restriction-Modification Systems</td>
<td>43</td>
</tr>
<tr>
<td>6 Genome Dynamics and Genome Co-Evolution with Restriction-Modification</td>
<td>44</td>
</tr>
<tr>
<td>Gene Complexes</td>
<td></td>
</tr>
<tr>
<td>6.1 Some Restriction-Modification Gene Complexes and Restriction Sites</td>
<td>45</td>
</tr>
<tr>
<td>Are Eliminated from the Genome</td>
<td></td>
</tr>
<tr>
<td>6.2 Mutagenesis and Anti-Mutagenesis</td>
<td>48</td>
</tr>
<tr>
<td>6.3 End Joining</td>
<td>48</td>
</tr>
<tr>
<td>6.4 Homologous Recombination by Bacteriophages</td>
<td>49</td>
</tr>
<tr>
<td>6.5 Cellular Homologous Recombination in Conflict and Collaboration</td>
<td>49</td>
</tr>
<tr>
<td>with Restriction-Modification Gene Complexes</td>
<td></td>
</tr>
<tr>
<td>6.6 Selfish Genome Rearrangement Model</td>
<td>51</td>
</tr>
<tr>
<td>7 Towards Natural Classification of Restriction Enzymes</td>
<td>52</td>
</tr>
<tr>
<td>8 Application of the Behavior of Restriction-Modification Gene Complexes</td>
<td>53</td>
</tr>
<tr>
<td>as Selfish Elements</td>
<td></td>
</tr>
<tr>
<td>9 A Hypothesis on the Attack by Restriction-Modification Gene Complexes</td>
<td>54</td>
</tr>
<tr>
<td>on the Chromosomes</td>
<td></td>
</tr>
<tr>
<td>10 Conclusions</td>
<td>55</td>
</tr>
<tr>
<td>References</td>
<td>56</td>
</tr>
</tbody>
</table>
Molecular Phylogenetics of Restriction Endonucleases

J.M. Bujnicki

1 Discovery and Classification of Restriction Enzymes 63
2 Genomic Context of R-M Systems 64
3 Historical Perspective of Comparative Analyses of Restriction Enzymes: Are They Products of Divergent or Convergent Evolution? 66
4 Crystallography of Type II REases: Exploration of the “Midnight Zone of Homology” 66
5 Homology Between Restriction Endonucleases and Other Enzymes Acting on Nucleic Acids 70
6 Non-Homologous Active Sites in Homologous Structures 71
7 Cladistic Analysis of the PD-(D/E)xK Superfamily 74
8 Identification of PD-(D/E)xK Domains in Other Nucleases and Prediction of Their Position on the Phylogenetic Tree 79
9 In the End, Convergence Wins: Sequence Analyses Reveal Type II Enzymes Unrelated to the PD-(D/E)XK Superfamily 83
10 Evolutionary Trajectories of Restriction Enzymes: Relationships to Other Polyphyletic Groups of Nuclease 84

References 87

Sliding or Hopping? How Restriction Enzymes Find Their Way on DNA

A. Jeltsch, C. Urbanke

1 Introduction 95
2 Mechanisms of Facilitated Target Site Location by Proteins on DNA 96
2.1 Sliding 97
2.2 Hopping 98
2.3 Intersegment Transfer 99
3 Critical Factors Determining the Efficiency of Target Site Location by Sliding and Hopping Processes 100
4 Sliding or “Hopping” – A Survey of Experimental Data 102
4.1 Structures of Restriction Endonucleases 102
4.2 Accurate Scanning of the DNA for the Presence of Target Sites 102
4.3 Length Dependence of Linear Diffusion 103
The Type I and III Restriction Endonucleases: Structural Elements in Molecular Motors that Process DNA

S.E. McClelland, M.D. Szczelkun

1 Energy-Dependent DNA Processing ... 111
2 Motor Enzyme Architecture of the ATP-Dependent Restriction Endonucleases .. 113
2.1 Motor Enzyme Motifs in the Type I and III Restriction Endonucleases .. 113
2.1.1 Gross Organisation of the Type I HsdR Subunits 117
2.1.2 Gross Organisation of the Type III Res Subunits 119
2.1.3 Core Helicase Motifs in ATP Binding and Catalysis 119
2.1.4 The “Q-Tip Helix” – A New Helicase Motif? 120
2.1.5 The DNA Binding Motifs – Family-Specific Deviations 121
2.2 A Motor Enzyme Fold in the Type I and III Restriction Endonucleases .. 123
2.3 Macromolecular Assembly of the Type I and III Restriction Endonucleases .. 125
3 Future Directions ... 129
3.1 Coupling Chemical Energy to Mechanical Motion 129
3.2 Tools for Nanotechnology Rather Than Biotechnology? 131
References ... 132

The Integration of Recognition and Cleavage: X-Ray Structures of Pre-Transition State Complex, Post-Reactive Complex and the DNA-Free Endonuclease

A. Grigorescu, M. Horvath, P.A. Wilkosz, K. Chandrasekhar, J.M. Rosenberg

1 Introduction ... 137
2 The Pre-Transition State Complex ... 139
Two of a Kind: BamHI and BglII

É. Scheuring Vanamee, H. Viadiu, C.M. Lukacs, A.K. Aggarwal

1 Introduction .. 215
2 BamHI Endonuclease 216
 2.1 The Structure of Free BamHI 216
 2.2 BamHI Nonspecific Complex 217
 2.3 BamHI Specific Complex 219
 2.4 The Pre-Reactive Complex of BamHI 224
 2.5 The Structure of the BamHI Post-Reactive Complex . 225
3 BglII Endonuclease 227
 3.1 The Structure of Free BglII 227
 3.2 The Structure of BglII Bound to its Cognate DNA Site . 227
Conclusions .. 232
References .. 233
Contents

9 Reaction Mechanism of Type IIE REases 280
10 Are NaeI and EcoRII Evolutionary Links Between REases, Topoisomerases and DNA Recombinases? 283
11 Does Nature Construct Proteins with New Functions by Shuffling Protein Domains? 285
12 Activation of Type IIE REases for Biotechnological Purposes and for Mapping Epigenetic DNA Modifications . 287
13 Final Remark .. 288
References ... 289

Analysis of Type II Restriction Endonucleases That Interact with Two Recognition Sites 297

A. J. Welsh, S. E. Halford, D. J. Scott

1 Introduction ... 297
2 Different Classes of Interactions 298
3 Information from cis Reactions 301
3.1 One-Site/Two-Site Assays 301
3.2 Determining Reaction Mechanism 302
3.3 The Effect of Supercoiling 306
3.4 Catenane Substrates ... 306
4 DNA Binding and Looping with Sites in cis 307
5 Information from trans Reactions 311
5.1 Kinetic Studies .. 311
5.2 Binding Studies .. 312
6 Conclusion ... 314
References ... 315

The Role of Water in the EcoRI–DNA Binding 319
N. Sidorova, D. C. Rau

1 Introduction ... 319
2 Thermodynamics ... 321
3 Experimental Applications 325
3.1 Equilibrium Competition 325
3.1.1 Osmotic Stress Dependence or K_{nonsp-sp} 325
3.1.2 pH and Salt Dependence of K_{nonsp-sp} 326
3.2 Dissociation Kinetics of EcoRI from Its Specific Site
3.2.1 Osmotic Dependence of k_d
3.2.2 pH and Salt Dependence of k_d
3.3 Removing Water from an EcoRI–Noncognate DNA Complex with Osmotic Stress
3.3.1 Competitive Equilibrium at High Osmotic Stress
3.3.2 Dissociation Kinetics of the EcoRI from Noncognate Sites
3.4 Other Applications of Osmotic Stress to Restriction Nucleases
3.5 Application of Hydrostatic Pressure to Restriction Nucleases
4 Summary
References

Role of Metal Ions in Promoting DNA Binding and Cleavage by Restriction Endonucleases

J.A. Cowan

1 Introduction
2 Selection of Metal Cofactors to Promote Endonuclease Activity
3 Magnesium Analogs
4 Inhibitory Influence of Metal Cofactors
5 Illustrative Examples and General Guidelines for Metal-Promoted Endonuclease Activity
5.1 EcoRV and EcoRI
5.2 PvuII
5.3 BamHI
6 Other Restriction Endonucleases
7 Concluding Remarks
References
Restriction Endonucleases: Structure of the Conserved Catalytic Core and the Role of Metal Ions in DNA Cleavage

J.R. Horton, R.M. Blumenthal, X. Cheng

1 Introduction ... 361
2 Common Structural Attributes of Type II REases 365
3 A Common Catalytic Core with Key Catalytic Sidechains 365
4 Phylogenetic Analysis of REases 367
5 Possible Roles for Divalent Metal Ions 368
6 The One-Two-Three Metal Debate 369
7 Generalizations Regarding REase Catalysis 370
8 One-Metal Catalytic Mechanism: EcoRI, BglII 375
9 Two-Metal Catalytic Mechanisms 377
9.1 EcoRV ... 378
9.2 BamHI ... 379
9.3 Tn7 Transposase ... 380
9.4 T7 Endonuclease I 380
10 Three-Metal Catalytic Mechanism 381
11 “Hypothetical” Active Sites of REase Superfamily Members 382
11.1 MunI ... 382
11.2 BsoBI ... 383
11.3 NaeI .. 383
11.4 MutH .. 384
11.5 Holiday Junction Resolvases, Hjc 385
12 Prospects for the Future 385
References .. 386

Protein Engineering of Restriction Enzymes 393

J. Alves, P. Vennekohl

1 Introduction .. 393
2 Modifying Contacts of Restriction Enzymes to Their Recognition Sequence 393
2.1 Site-Directed Mutagenesis 397
2.2 In Vivo Selection Systems 400
3 Lengthening of Recognition Sequences 402
4 Changing the Subunit Composition 405
5 Future Directions (In Vitro Evolution) 406
References ... 407
Engineering and Applications of Chimeric Nucleases

K. Kandavelou, M. Mani, S. Durai, S. Chandrasegaran

1 Introduction 413
2 Engineering of Chimeric Nucleases 414
2.1 Functional Domains in FokI Restriction Endonuclease 416
2.2 Chimeric Nucleases 416
2.3 Zinc Finger Binding and Specificity 417
2.4 Mechanism of Cleavage by Zinc Finger Chimeric Nucleases (ZFN) 422
3 Application of Chimeric Nucleases 423
3.1 Stimulation of Homologous Recombination Through Targeted Cleavage in Frog Oocytes Using ZFN: Recombinogenic Repair 423
3.2 Targeted Chromosomal Cleavage and Mutagenesis in Fruit Flies Using ZFN: Mutagenic Repair 424
3.3 Gene Targeting in Human Cells Using ZFN 425
4 Future Experiments 426
4.1 Targeted Chromosomal Cleavage and Mutagenesis of the CCR5 Gene in a Human Cell Line 427
4.2 Targeted Correction of a CFTR Genetic Defect in a Human Cell Line Using ZFN 428
5 Potential Limitations of the Chimeric Nuclease Technology 429
6 Future Outlook 430
References 431

Subject Index 435
Restriction Endonucleases
Pingoud, A. (Ed.)
2004, XXVI, 443 p., Hardcover
ISBN: 978-3-540-20502-9