## Contents

**Introduction**

1. The Mineralogy of Illite – What is Illite?
   1.1 Illite Definitions
      - Definitions of the Past
      - Definition Based on XRD Examination
      - Examples of Pure Illites
      - Examples of Illites in Natural Soils, Sediments and Sedimentary Rocks
      - Summary of One-Dimensional Analysis of Natural Minerals by XRD
   1.2 Definition Based on Chemical Composition
      - Solid Solutions of Illite and Glauconite
      - Charge-Lowering Substitutions
      - The Crystal Structure of Illite and Solid Solution
      - The Theoretical Crystal Structure of Illite
   1.3 Thermodynamic Stability of Illite
      - The Gibbs Free Energy of Formation of the Illite Phase
      - The Stability Field of the End-Member Illite Phase
   1.4 The Growth of Illite Crystals
      - Crystal Shapes in Diagenetic Environments
      - Growth Mechanisms of Lath-Shaped Illite Crystals
      - Growth Processes for Plate-Shaped Crystals
   1.5 A Working Definition of Illite

2. The Geology of Illite
   2.1 Illite in Soils and Weathered Rocks
      - Occurrence of Illite in Soils
      - More Recent Studies
      - Early Formation of Illite in Weathered Granites
   2.2 Illite in Diagenetic Series
      - Illite Formed During Early Sedimentary or Eodiagenetic Processes
      - The Origin of Illite in Shale Burial Diagenesis

---

**Introduction**

1. The Mineralogy of Illite – What is Illite?

   1.1 Illite Definitions

      1.1.1 Definitions of the Past
      1.1.2 Definition Based on XRD Examination
      1.1.3 Examples of Pure Illites
      1.1.4 Examples of Illites in Natural Soils, Sediments and Sedimentary Rocks
      1.1.5 Summary of One-Dimensional Analysis of Natural Minerals by XRD

   1.2 Definition Based on Chemical Composition

      1.2.1 Solid Solutions of Illite and Glauconite
      1.2.2 Charge-Lowering Substitutions
      1.2.3 The Crystal Structure of Illite and Solid Solution
      1.2.4 The Theoretical Crystal Structure of Illite

   1.3 Thermodynamic Stability of Illite

      1.3.1 The Gibbs Free Energy of Formation of the Illite Phase
      1.3.2 The Stability Field of the End-Member Illite Phase

   1.4 The Growth of Illite Crystals

      1.4.1 Crystal Shapes in Diagenetic Environments
      1.4.2 Growth Mechanisms of Lath-Shaped Illite Crystals
      1.4.3 Growth Processes for Plate-Shaped Crystals

   1.5 A Working Definition of Illite

2. The Geology of Illite

   2.1 Illite in Soils and Weathered Rocks

      2.1.1 Occurrence of Illite in Soils
      2.1.2 More Recent Studies
      2.1.3 Early Formation of Illite in Weathered Granites

   2.2 Illite in Diagenetic Series

      2.2.1 Illite Formed During Early Sedimentary or Eodiagenetic Processes
      2.2.2 The Origin of Illite in Shale Burial Diagenesis
### Contents

2.2.3 Illite Crystallinity ........................................... 85  
2.2.4 Bentonite ................................................... 97  
2.2.5 Sandstones .................................................. 100  

2.3 Illite in Fossil and Active Geothermal Fields  
and Hydrothermal Alteration Zones .................................. 109  
2.3.1 Sericite and Illite in Fossil Hydrothermal Systems ........ 109  
2.3.2 Instability of Muscovite Relative to Illite .................. 113  
2.3.3 Crystallochemical Characteristics of High-Temperature Illites (Sericite) .................................. 115  
2.3.4 The Smectite-to-Illite Conversion in Geothermal Fields .. 119  

2.4 The Illite Age Measurement ....................................... 122  
2.4.1 Fundamental Concepts ...................................... 122  
2.4.2 The K–Ar Apparent Age of Authigenic-Detrital Mineral Mixtures .................................. 125  
2.4.3 Patterns of K–Ar Accumulation During Illite Growth Processes .................................. 129  
2.4.4 Diagenesis of Bentonites ...................................... 136  

2.5 Summary ....................................................... 139  
2.5.1 What is Illite? ................................................ 139  
2.5.2 Where Does Illite Form? ...................................... 141  

3 Dynamics of the Smectite-to-Illite Transformation ............. 145  
3.1 Experimental Studies ............................................ 145  
3.1.1 The Run Products in Whitney and Northrop’s Experiments Using Bentonite ........ 146  
3.1.2 The Different Possible Interpretations of the Experiments .................................. 149  

3.2 Kinetics of Experimental Transformations  
(Natural and Synthetic Starting Materials) ......................... 155  
3.2.1 Kinetics of Illite Formation Using Synthetic, Chemical Compositions ......................... 155  
3.2.2 Kinetics Using Natural Smectite Minerals ..................... 158  

3.3 The Bulk Composition Effect (K<sub>2</sub>O) ......................... 160  
3.3.1 Natural Minerals ................................................ 160  
3.3.2 Multiparameter Kinetics ...................................... 163  
3.3.3 Formation of Muscovite at High KOH Concentrations: Shape and Polymorph .................. 165  

3.4 Kinetics of the Smectite-to-Illite Conversion Process  
in Natural Environments ............................................ 166  
3.4.1 Burial Diagenesis ............................................. 167  
3.4.2 The Dual Reaction Kinetic Model (Velde and Vasseur 1992) .................................. 168  
3.4.3 Changes in Reaction Kinetics .................................. 170  

3.5 Success and Failure of the Multiparameter Models ............. 172  
3.5.1 The Kinetic Model of Pytte and Reynolds (1989)  
(Thermal Metamorphism) ........................................... 172
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.2 Drawbacks of Multi-Parameter Kinetic Models</td>
<td>172</td>
</tr>
<tr>
<td>3.6 Stability Controls ((T, t, \mu_x))</td>
<td>174</td>
</tr>
<tr>
<td>3.6.1 Comparison of Experimental Models and Natural Systems</td>
<td>174</td>
</tr>
<tr>
<td>3.6.2 Kinetic Parameter Values</td>
<td>174</td>
</tr>
<tr>
<td>3.6.3 Importance of Mineral Reactions</td>
<td>175</td>
</tr>
<tr>
<td>3.7 Summary</td>
<td>176</td>
</tr>
<tr>
<td>3.8 Application of Kinetics to K–Ar Dating</td>
<td>176</td>
</tr>
<tr>
<td>3.8.1 The Problem for K–Ar Dating of Illite from Shales</td>
<td>176</td>
</tr>
<tr>
<td>3.8.2 K–Ar Age and Mass Transfer</td>
<td>176</td>
</tr>
<tr>
<td>During Smectite-to-Illite Conversion</td>
<td>178</td>
</tr>
<tr>
<td>3.8.3 An Example: The Balazuc Series (Renac 1994)</td>
<td>182</td>
</tr>
<tr>
<td>4 Applications</td>
<td>189</td>
</tr>
<tr>
<td>4.1 Exploration and Exploitation of Natural Resources</td>
<td>190</td>
</tr>
<tr>
<td>4.1.1 Geothermal Resources</td>
<td>190</td>
</tr>
<tr>
<td>4.1.2 Clays and Petroleum</td>
<td>198</td>
</tr>
<tr>
<td>4.1.3 Illite Crystallinity and Organic Matter</td>
<td>210</td>
</tr>
<tr>
<td>4.1.4 Ore Resources</td>
<td>212</td>
</tr>
<tr>
<td>4.2 Environmental Problems</td>
<td>226</td>
</tr>
<tr>
<td>4.2.1 Illite and Mixed-Layer Minerals in Soils: Questions of Fertility</td>
<td>226</td>
</tr>
<tr>
<td>4.2.2 Some Effects of Agricultural Practice and their Bearing upon the Loss of Illite Content in Soils</td>
<td>230</td>
</tr>
<tr>
<td>4.2.3 Nuclear Waste Barriers – Strategy and Illite Mineralogy</td>
<td>240</td>
</tr>
</tbody>
</table>

### Glossary

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>249</td>
</tr>
</tbody>
</table>

### References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>263</td>
</tr>
</tbody>
</table>

### Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>283</td>
</tr>
</tbody>
</table>
Illite
Origins, Evolution and Metamorphism
Meunier, A.; Velde, B.D.
2004, XVI, 288 p., Hardcover
ISBN: 978-3-540-20486-2