TABLE OF CONTENT

PREFACE (2 pages)
M. Nikravesh, L. A. Zadeh, B. Azvine, R.R. Yager

Enhancing the Power of the Internet (20)
M. Nikravesh (Nikravesh@cs.berkeley.edu) 1-20

1. Introduction
2. Web Intelligence: Conceptual Search Engine and Navigation
3. Challenges and Road Ahead
4. Conclusions
5. Future Works
 5.1 TIKManD (Tool for Intelligent Knowledge Management and Discovery)
 5.2 Google™ and Yahoo! Concept-Based Search Engine
Acknowledgements
References

Soft Computing and User Modeling (32 pages) 21-46
B. Azvine and T Martin
[ben.azvine@bt.com] [Trevor.Martin@bristol.ac.uk]

1. Introduction
2. User models—Learning, Adaptness and Uncertainty
3. The Intelligent Personal Assistant
4. Assumptions for FILUM
 4.1 Updating Support
 4.2 Testing
 4.3 n-player IPD as a Test Bed for User Modeling
 4.4 Experiments
 4.5 User Models in the Telephone Assistant
5. Summary
References

Intelligent Web Searching Using Hierarchical Query Descriptions (15 Pages) 47-62
R. R. Yager
[Yager@Panix.Com]

1. Introduction
2. OWA Aggregation Operators
3. Introducing Importances In Queries
4. Concepts and Hierarchies
5. Hierarchical Querying in Information Retrieval
6. Thesaurus
7. Enhancing the Use of Importances
8. Granular Satisfactions

References

Relationships at the Heart of Semantic Web: Modeling, Discovering, and Exploiting Complex Semantic Relationships (36 Pages) 63-94
Amit Sheth, I. Budak Arpinar, and Vipul Kashyap
[amit@cs.uga.edu]

1. Introduction
2. Classification of Complex Relationships
 2.1 A Taxonomy of Relationships Based on the Information Content
 2.2 Representation of Relationships
 2.3 Computation and Exploitation of Relationships
3. Ontology Driven Relationship Identification: Example of the SCORE Technology
4. ρ Operator for Semantic Associations: Example of Semantic Relation Discovery and Ranking
 4.1 A Comparative Analysis of Semantic Relation Discovery and Indexing
 4.2 ρ Operator
5. Human-Assisted Knowledge Discovery Involving Complex Relations
 5.1 User-Defined Functions
 5.2 Information Scapes (IScapes)
 5.3 Human Assisted Knowledge Discovery (HAND) Techniques
6. Evaluations involving Semantic Relationships: Example of Multi-ontology Query Processing
 6.1 Query Processing in OBSERVER
 6.2 Estimating the Loss of Information
 6.3 Loss of information based on intensional information
 6.4 Loss of information based on extensional information
 6.5 A composite measure combining precision and recall
 6.6 Semantic adaptation of precision and recall
7. Conclusions
 Acknowledgements
References

Subjective Enhancement and Measurement of Web Search Quality (35 pages) 95-130
M. M. Sufyan Beg and Nesar Ahmad
{mmsbeg, nahmad}@ee.iitd.ac.in

Abstract
1. Introduction
 1.1 Content-Based Web Search
 1.1.1 Text Pre-Processing
 1.1.2 Term Frequency
 1.1.3 Vector Space Model
 1.1.4 Boolean Similarity Measures
 1.1.5 Problems with Content Based Web Search
1.2 Connectivity-Based Web Search
 1.3 Integrating Content Based and Connectivity Based Techniques
 1.4 Web Characterization
2. Search Engine Model
2.1. Query Handler
2.2. Query Formulation using Linguistic Operators
 2.2.1 Ordered Weighted Averaging (OWA) operator
 2.2.2 Relative Fuzzy Linguistic Quantifier
 2.2.3 OWA Operator Based Queries
2.3 Query Formulation using Weighted Logical Operators AND, OR and NOT
3 Updating Relevance Matrix from the User Feedback
 3.1 User Feedback Vector
 3.2 Dealing with Simple One-Keyword Query
 3.3 Dealing with Complex Multiple Keywords Query
 3.4 Dealing with NOT Terms in the Query
 3.5 Dealing with Linguistic and Weighted Queries
 3.6 Exponential Penalization for Documents Left Untouched by the User
4 Subjective Measurement of Web Search Quality
 4.1 Step I of FSQM: Transformation of Each Component of User Feedback Vector to a
 Corresponding Fuzzy 4.2 Preference Relation
 4.3 Step II of FSQM: Aggregation of Individual Fuzzy Preference Relations
 4.4 Step III of FSQM: From Combined Fuzzy Preference Relation to Combined Fuzzy Preference
 Ordering
 4.4 Step IV of FSQM: Finally Getting FSQM
5. Experiments and Results
 5.1 Results Pertaining to the Fuzzy Measure of Web Search Quality
6. Summary

References

Internet-enabled Soft Computing Holarchies for e-Health Applications
- Soft Computing Enhancing the Internet and
the Internet Enhancing Soft Computing – (36 Pages) 131-166
Mihaela Ulieru
[ulieru@acs.ucalgary.ca]

1. INTRODUCTION: EMERGENT HOLARCHIES IN CYBERSPACE
 1.1. The Holonic Enterprise: A Model for Internet-Enabled Workflow Management in Virtual Organizations
 1.2. Soft Computing for the HE: Enabling the Evolutionary, Self-Organizing Cyberspace
 1.2.1. Self-Organization: Emergence of the Holonic Structure
 1.2.2. Evolution Towards the Best Structure
 2.1. Particularities of Medical Holarchies
 2.2. Agents vs. Web Services in Medical Holarchies Implementation
 2.2.1. Web-Centric Implementation of Medical Holarchies
 2.2.2. Multi-Agent System Implementation of Medical Holarchies
 2.3. Challenges in Implementing Medical Holarchies
3. A CASE STUDY: REMOTE GLAUCOMA PROGRESSION MONITORING AND DIAGNOSIS
 3.1. The Glaucoma Holarchy – Inter-enterprise level
 3.2. The Glaucoma Clinic Holarchy (Intra-enterprise level)
 3.3. The Diagnosis Holarchy: Physical Resource Level
 3.4. Internet-enabled soft computing methodology for glaucoma progression monitoring (Physical resource level)
 3.5. Soft Computing for the Internet: Emergence of a Glaucoma Holarchy
4. CONCLUSIONS
ACKNOWLEDGEMENTS
REFERENCES

Searching and Smushing on the Semantic Net - Challenges for Soft Computing (13 Pages)
167-186
Trevor Martin
[bazvine@bt.com] [Trevor.Martin@bristol.ac.uk]
1. Introduction
2. Information Retrieval and Searching
 2.1 Extensions
 2.2 Performance Evaluation
3. Metadata
4. Opportunities for Soft Computing
 4.1 Knowledge Representation using Conceptual Graphs and Fril++
 4.2 Uncertainty in Conceptual Graphs
 4.3 Fril++
 4.4 Uncertainty in the Type Hierarchy
 4.5 Fusion of concepts - “smushing”
5. Summary
References

Dialogue-Based interaction with a web assistant: The Device Approach (20 Pages)
187-206
Ana García-Serrano, David Teruel, Josefa Z. Hernández
{agarcia, dteruel, phernan}@dia.fi.upm.es

1. Introduction
2. Dialogue based approach
3. Intelligent assistance on the web
4. Natural Language Processing
5. Working Prototype
6. Conclusions
Acknowledgements
References

Personalized Library Web Search Agents Using Data Mining and Granular Fuzzy Techniques (18 Pages)
207-224
Yu Tang, Yan-Qing Zhang, Abraham Kandel, T.Y. Lin and Y.Y. Yao
{zhang@taichi.cs.gsu.edu}

1 INTRODUCTION
2 DATA MINING OVERVIEW
 2.1 Basic Concept of Data Mining
 2.2 Process of Data Mining
 2.3 Methods of Data Mining
 2.4 Trends of Data Mining
3 CLASSIFICATION ALGORITHMS
 3.1 Algorithms
 3.2 SLIQ Algorithm
4 SYSTEM DESIGN
5 FUZZY WEB SEARCH AGENTS
6 GRANULAR WEB SEARCH AGENTS
7 CONCLUSIONS
References

Business Operation Intelligence (20 Pages)
225-240
Eric Shan, Fabio Casati, Umesh Dayal, and Ming-Chien Shan
{mcshan@exch.hpl.hp.com}

1 Introduction
2 The overall IBOM operation scenario
3 IBOM’s implementation and challenges
 3.1 Business metrics and mappings
 3.2 Operation data warehouse and steam data management
 3.3 GBR and BOCT libraries
 3.4 Business process management
4 Conclusion
References

Evaluating E-commerce projects using an information fusion methodology (13 Pages)
241-254
K. J. Engemann, H. E Miller, H. E. and R. R. Yager
[Yager@Panix.Com]

1. Introduction
2. Dimensions for Assessing E-Commerce Projects
3. Information Fusion using the Power Average
4. Evaluation of Qualitative Dimension
5. Optimization Model for a Project Portfolio
6. Conclusion
References

Dynamic Knowledge Representation for e-Learning Applications (24 Pages) 255-278
M. E. S. Mendes and L. Sacks
[mmendes@ee.ucl.ac.uk]

1. Introduction
2. Fuzzy Clustering for Knowledge Representation
3. Background for the Clustering Experiments
 3.1 Document Representation
 3.2 Pre-processing
 3.3 Document Encoding
 3.4 Clustering Algorithm
 Fuzzy c-Means Clustering Algorithm
 Selection of the Distance Function
 Relation between Euclidean Distance and Dissimilarity
 3.5 Hyperspherical Fuzzy c-Means Algorithm
 3.6 Performance Evaluation
 Internal Performance Measures: Validity Indexes for the FCM
 External Performance Measures: Precision, Recall, F-Measure
4. Fuzzy Clustering Experiments
 4.1 Data Set Description
 4.2 Experimental Results
 Performance Comparison between FCM and H-FCM
 FCM vs. H-FCM with Normalized Document Vectors
 Pre-processing Effects on the H-FCM Results
5. Adaptive Knowledge-based e-Content Navigation
6. Conclusions
7. Acknowledgement
References

Content Based Vector Coder for Efficient Information Retrieval (27 pages) 279-306
Shuyu Yang and Sunanda Mitra
[Shu.yang@ttu.edu, Sunanda.Mitra@coe.ttu.edu]
Andreas Nuernberger and Gery Ducatel
[anuernb@EECS.Berkeley.EDU] [ben.azvine@bt.com]

1 Introducing iArchive
2 User Profiles in Information Retrieval
3 A Fuzzy Logic Approach
4 Conclusion
5 Future Work
References

Fuzzy Detection of Network Intrusions and Integrated Network Management (19 Pages) 359-378
Seyed Shahrestani [seyed@ieee.org]

1 Introduction
2 Integrated Network Management
3 Intrusion Models and Detection Algorithms
 3.1 Statistical Anomaly Detection
 3.2 Recognition of Intrusive Patterns
 3.3 Rule-based Misuse Detection
 3.4 Immunology Based Intrusion Detection
4 Fuzzy Logic and Network Management
 4.1 Fuzzy Logic and Artificial Intelligence
 Fuzzy Logic
 Knowledge Based and Expert Systems
 Artificial Neural Networks
 Pattern Recognition
 Case-based Reasoning
 4.2 Classification of Tasks in Management Layers
 4.3 Advanced Help Desk
 4.4 Network Diagnostic Systems
 4.5 Quality-of-Service
 4.6 Fuzzy Intrusion Detection
5 Concluding Remarks
References

Smart Homepage-Finder—A Genetic Fuzzy Neural Agent for Searching Homepages Intelligently 379-402
Yuchun Tang and Yanqing Zhang
Department of Computer Science, Georgia State University, Atlanta, GA 30303
Tang Yuchun [tyczjs@yahoo.com]

1. Introduction
2. Web Information Search Task
3. Homepage-Finder: a case research of WIST
 3.1 Google Search Engine and Web Services
 3.2 Fuzzy Inference System (FIS)
 3.3 Fuzzy Neural Network (FNN)
 3.4 Supervised Learning and Genetic Algorithm
 3.5 Multi-threaded Java Application
 3.6 XML-driven system
 3.7 Non-linear Fuzzy Inference System
4. Performance Evaluations
 4.1 Google Search Strings Definition
4.2 Parameter Identification
4.3 Results
5. Conclusions
 References
Enhancing the Power of the Internet
2004, VIII, 406 p., Hardcover
ISBN: 978-3-540-20237-0