Contents

1 Helix-Helix Packing Between Transmembrane Fragments . 1
Mar Orzáez, Francisco J. Taberner, Enrique Pérez-Payá, Ismael Mingarro

Abstract .. 1
1.1 Introduction .. 2
1.2 Glycophorin A as a Model System 3
1.3 Influence of the Distance Between the Dimerisation
Motif and the Flanking Charged Residues
on the Packing Process Between TM Helices 5
1.4 Length of the Hydrophobic Fragment
and Oligomerisation Process 6
1.5 Prolines in Transmembrane Helix Packing 8
1.6 Future Prospects for Membrane Protein Analysis 11
References ... 12

2 Mobility Studies in Proteins by 15N Nuclear
Magnetic Resonance: Rusticyanin as an Example 15
Beatriz Jiménez, José María Moratal, Mario Piccioli, Antonio Donaire

Abstract .. 15
2.1 Introduction .. 15
2.1.1 NMR Versus X-Ray for the Acquisition
of Dynamic Information 16
2.1.2 Dynamics of Proteins and NMR 17
2.1.2.1 Theoretical Considerations 17
2.1.2.2 A Quantitative Analysis of the Model-Free Approach ... 19
2.1.2.3 Practical Aspects 21
2.1.3 The System: Rusticyanin 23
3 Structure and Dynamics of Proteins in Crowded Media:
A Time-Resolved Fluorescence Polarization Study
SILVIA ZORRILLA, GERMAN RIVAS, MARIA PILAR LILLO

3.1 Macromolecular Crowding in Physiological Media
3.1.1 Effect of Macromolecular Crowding on Chemical Equilibrium of Macromolecular Association Reactions
3.1.2 Experimental Approaches to the Study of the Effect of Macromolecular Crowding Upon Biochemical Reactions
3.2 Application of Time-Resolved Fluorescence Polarization Spectroscopy in Crowded Media
3.3 Volume Fraction and Intermolecular Separations in a Heterogeneous System
3.3.1 Characterization of the Crowded Medium Itself
3.3.2 Microscopic Model for Crowded Solutions
3.4 Structure and Dynamics of apoMb Dimer in Crowded Protein Solutions
3.4.1 Preparation of Apomyoglobin and Labelling with ANS
3.4.2 Spectroscopic Properties of ANS Remain Essentially Unchanged Upon Dimer Formation
3.4.3 Conformational Dynamics of the Dimer of Apomyoglobin
3.5 Conclusions and Outlook
References

4 Analyses of Wheat Seed Proteome: Exploring Protein–Protein Interactions by Manipulating Genome Composition
NAZRUL ISLAMAND, HISASHI HIRANO
4.1 Summary
4.2 Introduction
5 Modification-Specific Proteomic Strategy for Identification of Glycosyl-Phosphatidylinositol Anchored Membrane Proteins

FELIX ELORTZA, LEONARD J. FOSTER, ALLAN STENSBALLE, OLE N. JENSEN

5.1 Summary .. 67
5.2 Introduction .. 68
5.2.1 Glycosyl-Phosphatidylinositol Anchored Proteins 68
5.3 Results ... 71
5.3.1 Selective Isolation of GPI-Anchored Proteins 71
5.3.2 Identification of GPI-Anchored Proteins by Mass Spectrometry 72
5.3.3 Protein Sequence Analysis 73
5.4 Discussion ... 73
5.5 Conclusion .. 75
5.6 Material and Methods 76
5.6.1 Lipid Raft Preparation 76
5.6.2 Two-Phase Separation and Phosphoinositol-Phospholipase C Treatment 76
5.6.3 Mass Spectrometry 76
5.6.4 Bioinformatics 77
References ... 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>81</td>
</tr>
<tr>
<td>6.2</td>
<td>Quaternary Structure Variability</td>
<td>82</td>
</tr>
<tr>
<td>6.3</td>
<td>Structural Basis of pH-Dependent Oligomerisation:</td>
<td>83</td>
</tr>
<tr>
<td>6.3.1</td>
<td>The Key Role of His-131: The Crystal Structure of Dioclea violacea</td>
<td>85</td>
</tr>
<tr>
<td>6.4</td>
<td>Diocleinae Lectin Sequence Characteristics as Phylogenetic Markers</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>90</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>93</td>
</tr>
<tr>
<td>7.2</td>
<td>Structures Do Not Cause Function</td>
<td>94</td>
</tr>
<tr>
<td>7.3</td>
<td>Can Protein Functions Be Predicted from Structure or Should They Be Determined Experimentally?</td>
<td>95</td>
</tr>
<tr>
<td>7.4</td>
<td>Analysing Structure-Activity Correlations with Biosensors</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>100</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>103</td>
</tr>
<tr>
<td>8.2</td>
<td>How is Protein Function Defined and Represented?</td>
<td>104</td>
</tr>
<tr>
<td>8.2.1</td>
<td>The Problem of Function Description</td>
<td>105</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Attempts Towards Textual Descriptions of Function</td>
<td>106</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Present Limitations of Functional Descriptions and New Research Directions</td>
<td>108</td>
</tr>
</tbody>
</table>
10.3.3 Kinetic Analysis .. 139
10.3.4 Solution Competition Analysis Using Biosensors 140
10.4 Biosensor Analysis of the Interactions Between EGF and the EGFR ... 140
10.4.1 Immobilisation Strategies for EGF 140
10.4.2 Immobilisation Strategies for sEGFR 142
10.4.3 Kinetic Analysis of the Interaction Between hEGF and the Soluble Extracellular Domain of the EGF Receptor (sEGFR 1–621) 143
10.4.4 Confirmation of the Binding Model 145
10.4.5 Identification of a Truncated High Affinity Form of the Soluble Extracellular Domain of the EGF Receptor 147
10.4.6 Kinetic Analysis of the Interaction Between EGF and sEGFR 1–501 .. 148
10.4.7 Analysis of the Receptor/Ligand Interaction Using Immobilised Receptor .. 149
10.4.8 sEGFR 1–501 and sEGFR 1–621 are Competitive Inhibitors of EGF Induced Mitogenesis .. 150
10.4.9 Identification of a Determinant of EGF Receptor Ligand Binding Specificity (Chickenising the Human EGF Receptor) .. 151
10.5 Structural Studies on the EGF Receptor Family 152
10.5.1 Inactivated EGFR Adopts an Autoinhibited Configuration .. 154
10.6 Regulation of Homo- and Heterodimerisation 154
10.7 Rationalisation of the Structural and Biosensor Data 156
10.8 Conclusion ... 157

11 The Functional Interaction Trap: A Novel Strategy to Study Specific Protein-Protein Interactions 165
Alok Sharma, Susumu Antoku, Bruce J. Mayer

11.1 Protein–Protein Interactions in Cellular Systems 165
11.2 Signal Transduction .. 165
11.3 Tyrosine Phosphorylation and the Identification of Physiologically Relevant Substrates 167
11.4 The Functional Interaction Trap as a Novel Strategy to Promote Specific Protein–Protein Interactions and Post-Translational Modifications .. 169
11.4.1 Coiled-Coil Segments Can Act as a Specific Artificial Binding Interface Between the Abl Tyrosine Kinase and Substrates .. 170
11.4.2 Coiled-Coil Segments can Activate Physiological
Downstream Signaling Events .. 173
11.4.3 Implications of FIT for Analysis of the Functional
Consequences of Specific Tyrosine Phosphorylation 174
11.5 Broader Uses of the FIT Strategy 176
11.6 Advantages and Disadvantages of FIT 178
11.7 Concluding Remarks ... 179
References ... 180

12 Analysis of Protein-Protein Interactions in Complex
Biological Samples by MALDI TOF MS. Feasibility
and Use of the Intensity-Fading (IF-) Approach 183
JOSEP VILLANUEVA, OSCAR YANES, ENRIQUE QUEROL,
LUIS SERRANO AND FRANCESC X. AVILÉS

12.1 Introduction ... 183
12.1.1 Mass Spectrometry as a Modern Approach
to Study Protein–Protein and Protein–Ligand Interactions . 183
12.1.2 Characterization of Non-Covalent Interactions Using ESI . 184
12.1.3 Characterization of Non-Covalent Interactions
Using MALDI .. 184
12.1.3.1 MALDI-Based Indirect Methods 184
12.1.3.2 MALDI-Based Direct Methods 185
12.1.3.3 The Intensity-Fading (IF) MALDI-T of Approach 186
12.2 Experimental Procedures 186
12.2.1 Biomolecule Interaction Experiments 186
12.2.1.1 General Sample Preparation 186
12.2.1.2 Protease–Inhibitor Interaction 187
12.2.2 MALDI-TOF Mass Spectrometry 187
12.2.2.1 Preparation of Samples for MALDI-TOF Mass Spectrometry .. 187
12.2.2.2 MALDI-TOF Matrix Preparation 188
12.2.2.3 Sample-Matrix Preparation 188
12.3 Results and Discussion .. 188
12.3.1 Basis for the Detection of Non-Covalent
Complexes by MALDI-TOF MS 188
12.3.2 Suggested Mechanism for “Intensity Fading”
(IF-) in MALDI-MS .. 189
12.3.3 Semiquantitative Determination
of the Affinities Between the Interacting Partners 190
12.3.4 Detection of Protein Ligands in Complex Samples 192
12.3.4.1 Ion Suppression Effects in MALDI-TOF MS,
and Sample Preparation for Complex Biological Samples ... 192
14.3.2 Thermal Denaturation Studies Monitored by Differential Scanning Calorimetry (DSC) 227
14.3.3 Circular Dichroism Spectroscopy 228
14.3.4 Conclusions Concerning the Structure of TbpB 229
References 229

15 The Quantitative Advantages of an Internal Standard in Multiplexing 2D Electrophoresis 231
John Prime, Andrew Alban, Edward Hawkins, Barry Hughes

15.1 Introduction 231
15.2 Materials and Methods 234
15.2.1 Sample Preparation and Labelling 234
15.2.2 CyDye Pre-Labelling of Protein Samples for the Ettan DIGE System 236
15.2.3 2-D Gel Electrophoresis 236
15.2.4 Image Acquisition of Ettan DIGE System Gels 237
15.2.5 SYPRO Ruby Post-Staining of Conventional 2-DE Gels 237
15.3 Results 237
15.3.1 Ettan DIGE System Analysis 238
15.3.2 Image Analysis of Conventional ‘One Sample Per Gel’ SYPRO Ruby Stained Gels with Progenesis 242
15.3.3 Comparison of Quantitative Proteome Analysis Results Between the Two Systems 245
15.3.3.1 BSA 245
15.3.3.2 Conalbumin 246
15.3.3.3 GAPDH 246
15.3.3.4 Trypsin Inhibitor 247
15.4 Conclusions 247
References 249

16 Genetic Engineering of Bacterial and Eukaryotic Ribosomal Proteins for Investigation on Elongation Arrest of Nascent Polypeptides and Cell Differentiation 251
Fotini Leontiadou, Christina Matragou, Philippos Kotakis, Dimitrios L. Kalpakis, Ioannis Vizirianakis, Sofia Kouidou, Asterios Tsifsoglou, Theodora Choli-Papadopoulou

16.1 Introduction 251
16.2 The Involvement of L4 Ribosomal Protein on Ribosome Elongation Arrest 252
Amino Acid Sequencing of Sulfonic Acid-Labeled Tryptic Peptides Using Post-Source Decay and Quadratic Field MALDI-ToF Mass Spectrometry

Rama Bhikhabhai, Mattias Algotsson, Ulrika Carlsson, John Flensburg, Lena Hörnsten, Camilla Larsson, Jean-Luc Maloisel, Ronnie Palmgren, Mari-Ann Pesula, Maria Liminga

Abstract

19.1 Introduction

19.2 Material and Methods

19.2.1 Chemicals

19.2.2 CAF Labeling Protocol

19.2.3 Analysis of Peptides by MALDI-ToF Mass Spectrometry

19.2.4 Interpretation of Spectra

19.2.5 Protein Identification

19.2.6 Analysis of Synthetic Phosphopeptides

19.3 Results and Discussion

19.3.1 Sequencing of a Synthetic Peptide

19.4 Identification/Confirmation of Recombinant Protein

19.4.1 Sensitivity

19.4.2 Sequencing of Phosphopeptides

19.4.2.1 Identification of Phosphopeptide

19.5 Conclusions

References

Separation of Peptides and Amino Acids using High Performance Capillary Electrophoresis

Hong Jin, Roza Maria Kamp

20.1 Introduction

20.2 Separation of Peptides

20.2.1 Trypsin Cleavage

20.2.1.1 Digestion of β-Lactoglobulin

20.2.1.2 Trypsin Digestion of Cytochrome C

20.2.2 Separation Conditions for HPCE

20.2.2.1 Separation of β-Lactoglobulin Tryptic Peptides

20.2.2.2 Separation of Cytochrome C After Trypsin Digestion

20.3 Sequencing of Proteins and PTH Amino Acid Analysis

20.3.1 Chemicals

20.3.2 Amino Acid Standard Preparation

20.3.3 Sequencing of Bradykinin
20.3.4 HPCE Separation Conditions for PTH Amino Acid

20.3.5 Optimization of the PTH Amino Acid Separation

20.4 Conclusion

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
</tr>
<tr>
<td>305</td>
</tr>
<tr>
<td>305</td>
</tr>
<tr>
<td>306</td>
</tr>
</tbody>
</table>

21 Interpro and Proteome Analysis – *In silico* Analysis of Proteins and Proteomes

Nicola Jane Mulder, Manuela Pruess, Rolf Apweiler

21.1 Introduction

21.2 Protein Analysis Tools

21.2.1 InterPro

21.2.1.1 Content and Features

21.2.1.2 Searching InterPro

21.2.1.3 Applications

21.2.2 Proteome Analysis

21.2.2.1 Content and Features

21.2.2.2 Statistical Analysis

21.2.2.3 Applications

21.3 Discussion

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>307</td>
</tr>
<tr>
<td>308</td>
</tr>
<tr>
<td>308</td>
</tr>
<tr>
<td>310</td>
</tr>
<tr>
<td>310</td>
</tr>
<tr>
<td>312</td>
</tr>
<tr>
<td>312</td>
</tr>
<tr>
<td>312</td>
</tr>
<tr>
<td>314</td>
</tr>
<tr>
<td>315</td>
</tr>
<tr>
<td>316</td>
</tr>
</tbody>
</table>

22 Prediction of Functional Sites in Proteins by Evolutionary Methods

Pedro López-Romero, Manuel J. Gómez, Paulino Gómez-Puertas, Alfonso Valencia

Abstract

22.1 Protein Function and Amino Acids Involved

22.2 Interaction Sites and Their Structural and Chemical Properties

22.3 Functional Role of Conserved Residues in Multiple Sequence Alignments

22.4 Why Predicting Functional Sites?

22.5 The Use of Sequence Information for the Prediction of Functional Sites

23.6 Methods for Predicting Tree-Determinant Residues

23.7 Methods for Predicting Functional Sites Based on Structural Information

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>319</td>
</tr>
<tr>
<td>319</td>
</tr>
<tr>
<td>320</td>
</tr>
<tr>
<td>320</td>
</tr>
<tr>
<td>321</td>
</tr>
<tr>
<td>322</td>
</tr>
<tr>
<td>324</td>
</tr>
<tr>
<td>327</td>
</tr>
<tr>
<td>Section</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>23.8</td>
</tr>
<tr>
<td>22.9</td>
</tr>
<tr>
<td>22.10</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

23 Extracting and Searching for Structural Information: A Multiresolution Approach

Natalia Jiménez-Lozano, Mónica Chagoyen, Pedro Antonio De-alarcón, José María Carazo

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>From Protein to Function</td>
<td>341</td>
</tr>
<tr>
<td>23.2</td>
<td>Structural Feature Relevance in Macromolecular Complexes</td>
<td>343</td>
</tr>
<tr>
<td>23.3</td>
<td>Extraction and Characterisation of Structural Features</td>
<td>344</td>
</tr>
<tr>
<td>23.4</td>
<td>FEMME Database: Feature Extraction in a Multi-Resolution Macromolecular Environment</td>
<td>348</td>
</tr>
<tr>
<td>23.5</td>
<td>One of the FEMME Utilities: Query by Content</td>
<td>352</td>
</tr>
<tr>
<td>23.6</td>
<td>Conclusions</td>
<td>354</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24 Peak Erazor: A Windows-Based Programme for Improving Peptide Mass Searches

Karin Hjernø, Peter Højrup

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1</td>
<td>Introduction</td>
<td>359</td>
</tr>
<tr>
<td>24.2</td>
<td>Program Layout</td>
<td>360</td>
</tr>
<tr>
<td>24.2.1</td>
<td>Erazor List</td>
<td>360</td>
</tr>
<tr>
<td>24.2.2</td>
<td>Peak List</td>
<td>362</td>
</tr>
<tr>
<td>24.2.3</td>
<td>Background</td>
<td>363</td>
</tr>
<tr>
<td>24.2.4</td>
<td>Evaluate</td>
<td>363</td>
</tr>
<tr>
<td>24.3</td>
<td>Calibrating for Peptide Mass Fingerprinting</td>
<td>363</td>
</tr>
<tr>
<td>24.4</td>
<td>Mapping Peptide Masses in Known Proteins</td>
<td>365</td>
</tr>
<tr>
<td>24.5</td>
<td>Identifying Background Peaks</td>
<td>366</td>
</tr>
<tr>
<td>24.6</td>
<td>Evaluation: Extracting Information on Common Contaminants</td>
<td>366</td>
</tr>
<tr>
<td>24.7</td>
<td>Discussion</td>
<td>368</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Increasing Throughput and Data Quality for Proteomics

Alfred L. Gaertner, Nicole L. Chow, Beth G. Fryksdale, Paul Jedrzejewski, Brian S. Miller, Sigrid Paech, David L. Wong

Abstract

25.1 Introduction

25.1.1 Prefractionation by Membrane Devices

25.1.2 Fractionation of a Fungal Exoproteome

25.1.3 Mass Spectrometry Identification After Prefractionation

25.2 Deglycosylation as a Means for Improved Protein Identification

25.2.1 Deglycosylation of a Fungal Proteome

25.2.2 Deglycosylation Summary

25.3 High-throughput Proteomics Method Optimization

25.3.1 Method Development to Increase Sample Consistency

25.3.2 Method Optimization and Results

25.3.2.1 Digestion Buffers

25.3.2.2 Extraction Buffers

25.3.2.3 Matrix Spotting Methods

25.3.3 High-throughput Proteomics (ProGest) Optimization

25.3.4 Conclusions

25.4 Protein Identification and Quantification using N\(^{14}/N^{15}\) Isotopic Labeling Technique

25.4.1 Identification and Quantification Technique

25.4.2 Conclusion

References

Subject Index
Methods in Proteome and Protein Analysis
Kamp, R.M.; Calvete, J.J.; Choli-Papadopoulou, T. (Eds.)
2004, XXXII, 404 p., Hardcover
ISBN: 978-3-540-20222-6