Section I: The physics of accretion and ejection

Course 1. Accretion and Ejection-Related MHD

by J. Heyvaerts

1 Introduction

2 The MHD model
 2.1 Following the motion
 2.2 Conservation equations in general
 2.3 Conservation of mass and charge
 2.4 Conservation of momentum
 2.5 Conservation of energy
 2.6 Coupling to Maxwell’s equations

3 Non relativistic MHD
 3.1 Non relativistic MHD equations
 3.2 Incompressible limit and Navier-Stokes equation
 3.3 Magnetic pressure and tension
 3.4 Alfvén speed

4 Special relativistic MHD
 4.1 Four-vectors and tensors in minkowskian space
 4.2 Equations of special relativistic MHD

5 Magneto hydrostatic equilibria
 5.1 General properties of magneto hydrostatic equilibria
 5.2 Axisymmetric MHD equilibria and Grad Shafranoff equation
6 Magnetic field evolution .. 23
 6.1 The perfect MHD limit 23
 6.2 Consequences and limits of the field freezing theorems ... 26
 6.3 Field diffusion versus field advection 27
 6.4 A simple model of joint advection and diffusion 28
 6.5 Reconnection flows 30

7 The dynamo problem .. 34
 7.1 Antidynamo theorems 35
 7.2 Kinematic turbulent dynamos 36

8 Simple stationary flows 38
 8.1 MHD Couette flow 38
 8.2 Isotropic HD wind 39

9 Axisymmetric, rotating, stationary, perfect MHD winds and jets 43
 9.1 Ferraro’s isorotation law 43
 9.2 Conservation of the polytropic entropy 45
 9.3 Conservation of specific angular momentum 45
 9.4 Alfvén radius and density 46
 9.5 Conservation of specific energy 46
 9.6 Transfield equation 48
 9.7 Bernoulli dynamics alone 48
 9.8 The Bernoulli-Transfield system 49
 9.9 Alfvén regularity condition 50
 9.10 Ellipticity or hyperbolicity of the Bernoulli-Transfield system ... 51
 9.11 An analysis of forces in axisymmetric MHD winds and jets ... 52

10 Asymptotics of perfect MHD winds and jets 54
 10.1 General results on the asymptotics of polytropic winds ... 54
 10.2 Asymptotic transfield equation 55
 10.3 Electric circuit in the asymptotic domain 57
 10.4 Construction of explicit asymptotic solutions 59

11 Small motions ... 62
 11.1 Linearized dynamical equations for small motions 62
 11.2 Reduction to an equation for the Lagrangean displacement ... 63
 11.3 Dispersion relation for MHD modes in an homogeneous medium . 65

12 Stability ... 66
 12.1 Perfect MHD potential energy 66
 12.2 Change of potential energy and operator of small motions 67
 12.3 Normal modes and potential energy 68
Course 4. Accretion-Ejection Models of Astrophysical Jets

by R.E. Pudritz

1 Introduction

2 Observations and basic physics

2.1 Molecular outflows and jets in YSOs
2.2 YSO accretion disks: Links to jets
2.3 Magnetic fields: From molecular clouds to disks around YSOs
2.4 The role of jets and accretion disks in star formation
2.5 Relativistic systems: Microquasars, quasars, and X-ray pulsars
2.6 Magnetized accretion disks: General physical processes

3 Theoretical models

3.1 Axisymmetric hydromagnetic winds: Conservation laws
3.2 MHD wind torques on disks: Jets as the mechanical manifestation of accretion power
3.3 Force-balance in jets; the mechanism of jet collimation
3.4 Accretion-ejection structures
3.5 Disk – magnetosphere coupling

4 Numerical simulations

4.1 2D simulations: Jets from stationary Keplerian disks
4.2 3D simulations: Self-regulatory stability of jets
4.3 Global simulations of accretion-ejection structures

5 Conclusion

Section II: High energy astrophysics

Course 5. Ultra High Energy Cosmic Rays

by V. Berezinsky

1 Introduction

2 Extragalactic astrophysical origin of UHECR

2.1 Extragalactic acceleration sources
2.2 Energy losses and propagation
2.3 Uniform distribution of UHECR sources and GZK cutoff
2.4 The astrophysical AGN model for UHECR
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Elementary particle solutions to UHECR problem</td>
<td>247</td>
</tr>
<tr>
<td>4</td>
<td>Conclusions</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Course 6. Gamma-Ray Bursts</td>
<td>251</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>253</td>
</tr>
<tr>
<td>2</td>
<td>Observations</td>
<td>255</td>
</tr>
<tr>
<td>2.1</td>
<td>Prompt emission</td>
<td>255</td>
</tr>
<tr>
<td>2.2</td>
<td>Afterglow</td>
<td>262</td>
</tr>
<tr>
<td>3</td>
<td>Theoretical scenario</td>
<td>271</td>
</tr>
<tr>
<td>3.1</td>
<td>Distance scale</td>
<td>271</td>
</tr>
<tr>
<td>3.2</td>
<td>Compact source – relativistic motion</td>
<td>272</td>
</tr>
<tr>
<td>3.3</td>
<td>Fireballs</td>
<td>274</td>
</tr>
<tr>
<td>3.4</td>
<td>A three-step scenario</td>
<td>279</td>
</tr>
<tr>
<td>4</td>
<td>Afterglow</td>
<td>280</td>
</tr>
<tr>
<td>4.1</td>
<td>The external shock</td>
<td>281</td>
</tr>
<tr>
<td>4.2</td>
<td>Radiative processes</td>
<td>283</td>
</tr>
<tr>
<td>4.3</td>
<td>Additional effects</td>
<td>285</td>
</tr>
<tr>
<td>5</td>
<td>Prompt emission</td>
<td>290</td>
</tr>
<tr>
<td>5.1</td>
<td>Internal shocks</td>
<td>290</td>
</tr>
<tr>
<td>5.2</td>
<td>Reverse shock</td>
<td>299</td>
</tr>
<tr>
<td>5.3</td>
<td>Results</td>
<td>302</td>
</tr>
<tr>
<td>5.4</td>
<td>Photosphere</td>
<td>303</td>
</tr>
<tr>
<td>6</td>
<td>Central engine</td>
<td>305</td>
</tr>
<tr>
<td>6.1</td>
<td>Mergers</td>
<td>306</td>
</tr>
<tr>
<td>6.2</td>
<td>Collapsars</td>
<td>307</td>
</tr>
<tr>
<td>6.3</td>
<td>MHD winds?</td>
<td>307</td>
</tr>
<tr>
<td>7</td>
<td>More than photons?</td>
<td>308</td>
</tr>
<tr>
<td>7.1</td>
<td>Ultra-high energy cosmic rays</td>
<td>308</td>
</tr>
<tr>
<td>7.2</td>
<td>High energy neutrinos</td>
<td>308</td>
</tr>
<tr>
<td>7.3</td>
<td>Gravitational waves</td>
<td>309</td>
</tr>
<tr>
<td>8</td>
<td>Conclusions</td>
<td>309</td>
</tr>
</tbody>
</table>
Course 7. Cosmic Rays and Particle Acceleration at Astrophysical Shocks

by A. Achterberg

1 The birth of cosmic ray physics 315
2 Radio astronomy, magnetic fields and synchrotron radiation 317
3 Cosmic ray origin theories 319
4 Astrophysical particle acceleration 320
 4.1 Shocks as accelerators 321
5 Basic principles of diffusive shock acceleration 323
6 Diffusion and acceleration time 331
7 The Box Model for shock acceleration 336
 7.1 Maximum energy 339
 7.2 Bohm diffusion 340
8 Outstanding issues: Theory 343
 8.1 The question of injection 343
 8.2 Stability: Precursor and shock stability 345
9 Inclination angle dependence and quasi-perpendicular shocks 346
 9.1 Superluminal shocks 347
10 Relativistic shocks 349
11 Ultra-relativistic shocks 353
 11.1 The case of upstream deflection 354
 11.2 The case of upstream scattering 358
 11.3 Initial boost 361
 11.4 Cycle- and residence times and the maximum energy 363
12 Maximum energy: A cosmic conspiracy? 368
13 Gamma ray bursts and ultra-high-energy cosmic rays 373
 13.1 Is there a connection between GRBs and UHECRs? 378
 13.2 Acceleration by trans-relativistic waves/weak shocks 384
 13.3 Acceleration of pulsar-wind material by the external shock 388
 13.4 UHECR spectrum 391
 13.5 Conclusion 394
Section III: Black holes and AGN’s

Course 8. The Black Hole Environments

by M. Camenzind

1 Introduction

2 Black Holes and beyond

3 The black hole paradigm for galactic nuclei

4 Gravity of compact objects

5 Conclusions and future prospects

Course 9. Accretion Around Active Galactic Nuclei

by B. Czerny
Section IV: Pre-main sequence objects

Course 11. Accretion Signatures in Young Stellar Objects

by N. Calvet

1. Introduction
2. YSO
3. Formation mechanisms
4. Accretion luminosity and mass accretion rate
5. Magnetospheric accretion
 5.1 Line formation in the magnetospheric flow
 5.2 The accretion shock
6. Observations of disks in YSO
7. Accretion disks
8. FU Ori objects
9. Irradiated accretion disks
10. Effects of dust properties
11. SEDs of HAeBe
12. Winds as accretion diagnostics
13. Validity of the models
14. Summary

Course 12. Evolution of YSO Disks

by L. Hartmann

1. Introduction
Course 13. X-Rays from YSOs: Desperately Seeking the Central Engine

by T. Montmerle

1 Background: YSOs and magnetic fields
 1.1 Pre-main sequence evolution in a nutshell 585
 1.2 X-rays as tracers of YSO magnetic activity 587
 1.3 The “solar paradigm” and the solar-stellar connection 587

2 Challenging the solar paradigm
 2.1 X-ray emission at high latitudes 589
 2.2 Polar X-rays? .. 591
 2.3 A new look a stellar dynamos 591

3 Starting the central engine: X-rays from protostars

4 Magnetic topology of YSOs: Confronting theory and observation

5 Conclusions

Section V: New instrumentation

Course 14. Pierre Auger Observatory: Status and Prospects

by C. Lachaud

1 Introduction

2 Main parameters of the ground array
3 Global performance of the ground array 605
 3.1 Aperture ... 605
 3.2 Energy resolution 605
 3.3 Angular resolution 606
 3.4 Composition analysis 606

4 Status and prospects 610

Course 15. Observations of the High Energy Gamma-Ray Universe

by C. Masterson 613

1 Experimental techniques in γ-ray astronomy 615
 1.1 The stereo imaging technique 616
 1.2 The H.E.S.S. telescope array 616
 1.3 H.E.S.S. system performance 618
 1.4 Satellite based γ-ray astrophysics 618

2 Astrophysics at VHE energies 619
 2.1 Active Galactic Nuclei 619
 2.2 Supernova remnants 620
 2.3 Pulsars ... 620
 2.4 Unidentified EGRET sources 621
 2.5 Fundamental physics 621

3 Conclusions 621
Accretion Disks, Jets and High-Energy Phenomena in Astrophysics
Les Houches Session LXVIII, July 29 - August 23, 2002
Beskin, V.; Henri, G.; Menard, F.; Pelletier, G.; Dalibard, J. (Eds.)
2003, XXVIII, 628 p., Hardcover
ISBN: 978-3-540-20171-7