Philip L. Penfold
Jan M. Provis
Editors

Macular Degeneration
This book provides a unique overview of current thinking on the pathogenesis, incidence and treatment of age-related macular degeneration (AMD). It includes, for the first time, a synthesis of the views of the world’s leading scientists and clinical practitioners regarding retinal biology and the basic mechanisms, clinical and pathogenetic processes and rational approaches to the treatment of AMD.

Although the fovea is less than a millimetre in diameter, disorders of the fovea and its immediately surrounding area (the macula) are responsible for the majority of cases of untreatable blindness in the developed world. The basis for the vulnerability of the macula region in these degenerative changes is beginning to emerge. The fovea has a number of features that distinguish it from other parts of the retina and reflect its specialization for high visual acuity, principally a high density of photoreceptors and a lack of retinal vessels. Chapter 1, written by Anita Hendrickson, provides an overview of the anatomy of the primate macula. The fovea is a characteristic feature of the primate retina, lies on the temporal side of the optic disc and regards the central visual field. A sound understanding of macular anatomy is essential for understanding the impact of AMD on the patient.

In Chap. 2, we summarise the evidence suggesting a critical dependence of the central retina on vascular supply. The interrelationships between the physiological and immunological function of the blood-retinal barrier and the consequences of barrier breakdown are described. Increasing evidence is presented for the involvement of both resident microglia and choroidal leukocytes. New observations concerning the significance of drusen, the involvement of the retinal vasculature and the measurement of inflammation in AMD are presented for the first time. Taken together, the data lead to the conclusion that immunity plays both a primary and secondary role in the pathogenesis of AMD.

The link between photoreceptor dysfunction and the risk of neovascularization in Bruch’s membrane is explored by Jackson and colleagues in Chap. 3. Because the RPE is polarized, problems pertaining to the re-supply of photoreceptors on the apical aspect of the RPE (leading to photoreceptor death) should be conceptually separated from problems pertaining to waste removal on the basal aspect of the RPE (leading to Bruch’s membrane damage and neovascularization), at least for the purposes of designing mechanistic experiments. These processes are governed by different proteins and pathways at the cellular level and will be reflected in different risk factors and genetic predispositions at the population level. A rigorous test of a nutrient-deficiency hypothesis of AMD-associated photoreceptor death awaits more information about normal nutrient delivery mechanisms across the RPE/Bruch’s membrane complex, intra-retinal contributions to photoreceptor nutrition,
changes in these mechanisms with age and pathology, and differential effects on rods and cones.

In Chap. 4, AMD is considered as a complex genetic disease in which environmental risk factors impact on a genetic background. Finding the genes that determine susceptibility or modify the disease process is one of today’s challenges, but also offers a chance for understanding underlying disease processes and for the development of preventive strategies and treatments. This chapter explores our current knowledge about the genetic influences on AMD and indicates possible directions for future study.

Until recently, most of the information about the natural history of AMD has come from clinical and histopathological studies. Most such studies have previously been of short duration involving select groups of patients attending ophthalmology clinics or participating in trials in which severe disease may be overrepresented. In the past 15 years data from population-based studies have resulted in a better understanding of the epidemiology of this disease. Chapter 5 examines the epidemiology of AMD, focusing on data from several recent population-based studies.

In Chap. 6, the racial/ethnic differences in the incidence and prevalence of AMD in China are examined. In China AMD is considered one of the most important causes of blindness in those over the age of 50. With improvement of economic conditions in China, the most common causes of blindness such as cataract, corneal diseases, trachoma and glaucoma have been largely brought under control, while AMD has increased in prevalence, now fourth on the list of causes of blindness in the age group of those 60 years and over. Considering the large population of China, it has been estimated that AMD currently affects at least 20 million individuals.

Experimental models of age-related macular degeneration capture only selected features of the human disease. Animal models that encompass both atrophic and exudative aspects of retinal degenerations are needed to better understand disease progression and to predict and assess potential therapeutic approaches. Recent insights into the pathogenesis of macular degeneration, along with the combination of rapid screening techniques with transgenic and other methods, are giving rise to several promising experimental systems outlined by Ray Gariano in Chap. 7.

Normal function is dependent upon a balance between the generation of free radicals and oxidative species and the availability of antioxidants and free radical scavengers. David Pow and colleagues investigate the role of transporters and oxidative stress in AMD in Chap. 8. In Chap. 9, Jonathan Stone and colleagues describe a widespread degenerative phenomena observed at the edge of the ‘normal’ retina. The observations suggest that the edge of the retina is subject to localized stress throughout life, inducing a progressive degenerative process. These edge-specific changes are part of the life history of the normal retina and form part of the baseline against which retinal degeneration takes place.

In the final chapter Scott Cousins and colleagues address – in the context of the scientific information described in the other sections – current clinical research strategies to provide a concept-based overview of the status of current and future treatments for AMD. A brief review of key scientific definitions and pathogenic theories is followed by the rationale for current treatments and ongoing trials. Space is also set aside for a bit of “educated speculation” about the potential future directions of clinical research based upon scientific discoveries described in other chapters.
Acknowledgments

We are indebted to the contributing authors and many other colleagues for their help in preparing this book. Special thanks are due to Emily Bell for her assistance in formatting the initial submissions and to Diana van Driel, both for her contributions as an author and fellow electron microscopist and for her diligence as proof-reader par excellence.

Philip L. Penfold, MPhil., PhD.
Jan M. Provis, PhD.

Australian National University
Canberra, Australia

September 2004
1 Organization of the Adult Primate Fovea

Anita Hendrickson

1.1 Anatomy of the Human Fovea

1.1.1 General Anatomy

1.1.2 Photoreceptor Distribution, Types, and Numbers in the Human Retina

1.1.3 Inner Retinal Neurons Associated with Cones in Central Primate Retina

1.1.4 Vascular and Glial Specializations of the Fovea

1.1.5 Pigment Epithelium Numerical Relationships with Foveal Photoreceptors

1.2 Anatomy of the Old and New World Monkey Fovea: What Are the Differences with Human Foveas?

1.3 What Are the Anatomical Requirements to Create a Fovea?

1.3.1 Midget Ganglion Cells

1.3.2 High Cone Density and Types of Foveal Cones

1.3.3 Absence of Rods

1.3.4 Striate Cortex Expansion

1.3.5 Vascular Specializations

References

2 Immunology and Age-Related Macular Degeneration

Philip L. Penfold, James Wong, Diana van Driel, Jan M. Provis, Michele C. Madigan

2.1 Introduction: Why the Macula?

2.2 The Immune Status of the Retina

2.2.1 The Blood-Retinal Barrier

2.2.2 Microglia

2.3 Immune Mechanisms in AMD

2.3.1 Blood-Retinal Barrier Breakdown
2.3.2 Pigmentary Disturbance

2.3.3 Drusen

2.3.4 Cell-Mediated Immunity and Inflammation

2.3.5 Humoral Immunity

2.4 Clinical Significance of Drusen

2.5 Atrophic ("Dry") Macular Degeneration

2.6 Neovascular ("Wet") Macular Degeneration

2.7 Involvement of the Retinal Vasculature in AMD

2.8 Leucocyte Common Antigen (CD45) Expression in AMD: A Measure of Inflammation

2.9 Conclusion

References

3 Photoreceptor Degeneration in Aging and Age-Related Maculopathy

Gregory R. Jackson, Christine A. Curcio, Kenneth R. Sloan, Cynthia Owsley

3.1 Introduction to Age-Related Maculopathy

3.2 Photoreceptor Loss

3.3 Photoreceptor Dysfunction

3.3.1 Topography of Loss and Dysfunction

3.4 Photoreceptor Function as a Bioassay of RPE and Bruch's Membrane Health

3.5 Impairment of Transport Between RPE and Photoreceptors

3.6 Summary

References

4 Genes and Age-Related Macular Degeneration

Robyn H. Guymer, Niro Narendran, Paul N. Baird

4.1 Age-Related Macular Degeneration, a Complex Genetic Disease

4.2 Genetic Basis of Disease

4.2.1 Family Studies

4.2.2 Sibling Studies

4.2.3 Twin Studies

4.3 Approaches to Genetic Investigation of AMD

4.3.1 Linkage Analysis

4.3.2 Candidate-Gene Screening

References
4.4 Future Directions ... 73
4.4.1 Single-Nucleotide Polymorphisms 73
4.4.2 Microarrays ... 73
4.4.3 Proteomics .. 74
4.5 Conclusions .. 74
References .. 75

5 Epidemiology of Age-Related Macular Degeneration 79
Ronald Klein

5.1 Prevalence and Incidence of Age-Related Macular Degeneration ... 79
5.1.1 Introduction .. 79
5.1.2 Prevalence of Age-Related Macular Degeneration 80
5.1.3 Prevalence: Race/Ethnicity 81
5.1.4 Incidence of Age-Related Macular Degeneration 82
5.2 Risk Factors for Age-Related Macular Degeneration 82
5.2.1 Introduction .. 82
5.2.2 Familial Factors ... 83
5.2.3 Systemic Factors .. 83
5.2.4 Lifestyle Behavior .. 87
5.2.5 Environmental Factors 89
5.2.6 Ocular Factors ... 90
5.2.7 Socioeconomic Factors and Work Exposures 92
5.3 Age-Related Macular Degeneration and Survival 93
5.4 Public Health Issues .. 93
5.5 Conclusions .. 93
References .. 94

6 Prevalence and Risk Factors for Age-Related Macular Degeneration in China 103
Zheng Qin Yin, Meidong Zhu, Wen Shan Jiang

6.1 Introduction .. 103
6.2 Regional Prevalence and Relationship of Morbidity to Age and Gender 104
6.2.1 Population-Based Studies 105
6.2.2 Clinical Review Studies 106
6.2.3 The Relationship of Morbidity to Age and Gender 107
6.3 Prevalence of ‘Wet’ and ‘Dry’ AMD 107
6.4 Visual Acuity in AMD ... 107
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Risk Factors of AMD in China</td>
<td>107</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Race/Ethnicity</td>
<td>109</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Light Exposures/Occupation</td>
<td>109</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Smoking</td>
<td>109</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Drinking</td>
<td>110</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Systemic Diseases</td>
<td>111</td>
</tr>
<tr>
<td>6.6</td>
<td>Conclusions</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>111</td>
</tr>
<tr>
<td>7</td>
<td>Experimental Models of Macular Degeneration</td>
<td>113</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>113</td>
</tr>
<tr>
<td>7.2</td>
<td>Aging</td>
<td>113</td>
</tr>
<tr>
<td>7.3</td>
<td>Laser-Induced CNV</td>
<td>114</td>
</tr>
<tr>
<td>7.4</td>
<td>Growth Factor-Induced CNV</td>
<td>114</td>
</tr>
<tr>
<td>7.5</td>
<td>Genetically Defined Animal Models</td>
<td>116</td>
</tr>
<tr>
<td>7.6</td>
<td>Conclusions</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>118</td>
</tr>
<tr>
<td>8</td>
<td>Transporters and Oxidative Stress in AMD</td>
<td>123</td>
</tr>
<tr>
<td>8.1</td>
<td>Redox Reactions, Health, Oxidative Damage and Disease</td>
<td>123</td>
</tr>
<tr>
<td>8.2</td>
<td>Does Epidemiology Support a Role for Oxidation in AMD?</td>
<td>124</td>
</tr>
<tr>
<td>8.3</td>
<td>Exogenous Factors Influencing AMD Incidence</td>
<td>125</td>
</tr>
<tr>
<td>8.4</td>
<td>Hallmark Features of Oxidative Damage and Free Radical Damage</td>
<td>125</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Oxidized Proteins</td>
<td>125</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Oxidized Lipids</td>
<td>125</td>
</tr>
<tr>
<td>8.4.3</td>
<td>DNA Damage</td>
<td>125</td>
</tr>
<tr>
<td>8.5</td>
<td>Oxidative Challenges in the Eye</td>
<td>125</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Endogenous Antioxidants, Enzymes and Related Molecules in the Retina</td>
<td>126</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Classes of Antioxidants</td>
<td>128</td>
</tr>
<tr>
<td>8.5.3</td>
<td>The Glutathione System</td>
<td>128</td>
</tr>
<tr>
<td>8.5.4</td>
<td>GSH in the Retina: Intrinsic Synthesis and Possible Interplay with the RPE</td>
<td>128</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Synthesis of GSH</td>
<td>128</td>
</tr>
</tbody>
</table>
8.5.6 The GSH-GSSG Cycle ... 129
8.5.7 Elimination of Superoxides by Superoxide Dismutases 131
8.5.8 Ascorbic Acid .. 132
8.5.9 Vitamin E .. 132
8.5.10 Taurine .. 133
8.5.11 Metallothionein .. 136
8.5.12 Zinc, Copper, Selenium and Manganese 136
8.5.13 Selenium Compounds .. 137
8.5.14 Manganese .. 137
8.5.15 Macular Pigments .. 138
8.5.16 Ascorbate and Recycling of Carotenoids 138
8.5.17 A Summary of Mechanisms for Antioxidant Protection 138
8.6 Cellular Interactions and Photoreceptor Death 138
 8.6.1 Light-Mediated Damage: Experimental Lesions and AMD 139
 8.6.2 Mechanisms of Cell Death 140
 8.6.3 Cell Death in Response to Oxidative Damage 140
8.7 A Role for Glial cells in AMD? 141
 8.7.1 Metabolic Functions of Müller Cells in the AMD Retina 141
 8.7.2 Cell Death and Glutamate Toxicity 144
8.8 Conclusions .. 144
 8.8.1 The Edge of the Retina as a Model of Retinal Degeneration 162
 8.8.2 Why Is the Protection of Photoreceptors Stress-Inducible? 162

9 Photoreceptor Stability and Degeneration in Mammalian Retina:
Lessons from the Edge .. 149

 Jonathan Stone, Kyle Mervin, Natalie Walsh, Krisztina Valter,
 Jan M. Provis, Philip L. Penfold

9.1 Introduction .. 149
9.2 Approach .. 150
9.3 Stages in Photoreceptor Degeneration at the Edge of the Retina .. 150
 9.3.1 Postnatal Development of the Edge:
 Site of Early Stress and Degeneration 150
 9.3.2 The Edge of the Retina Is Functionally Degraded 154
 9.3.3 The Edge of the Retina Is Highly Stable in the Face of Acute Stress 155
 9.3.4 The Adult Retina Aged 2 Years: Observations in the Marmoset 155
 9.3.5 The Adult Retina Aged 20 Years: Observations in the Baboon 155
 9.3.6 The Adult Retina Aged 30–70 Years: Observations in the Human 158
 9.3.7 Evidence of Progression in Edge Degeneration in Humans 161
9.4 Discussion .. 161
 9.4.1 The Edge of the Retina as a Model of Retinal Degeneration 162
 9.4.2 Why Is the Protection of Photoreceptors Stress-Inducible? 162
Chapter 1

Anita Hendrickson

Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Box 357420, Seattle, WA 98195-7420, USA

Department of Ophthalmology, University of Washington, 1959 NE Pacific Street, Box 357420, Seattle, WA 98195-7420, USA

e-mail: anitah@u.washington.edu, Tel.: +1-206-6852273, Fax: +1-206-5431524

Chapter 2

Philip L. Penfold, James Wong, Diana van Driel, Jan M. Provis, Michele C. Madigan

Save Sight Institute, University of Sydney, GPO 4337 Sydney 2001, NSW, Australia

Jan M. Provis

Department of Anatomy and Histology, University of Sydney 2006, NSW, Australia

Current address: Philip L. Penfold, Jan M. Provis, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra, ACT 2601, ACT, Australia

e-mail: philip.penfold@regenera.com.au, Tel.: +61-2-62574155, Fax: +61-2-62574355

e-mail: jan.provis@anu.edu.au, Tel.: +61-2-61254242, Fax: +61-2-61250758

Chapter 3

Gregory R. Jackson, Christine A. Curcio, Cynthia Owsley

Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, AL 35294-0009, USA

e-mail: jackson@uab.edu, Tel.: +1-205-325-8674, Fax: +1-205-325-8692

Kenneth R. Sloan

Department of Computer and Information Sciences, University of Alabama at Birmingham, AL, USA
Chapter 4

Robyn H. Guymer, Paul N. Baird

Department of Ophthalmology, University of Melbourne, 1st Floor Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne 3002
e-mail: rhg@unimelb.edu.au, Tel.: +613 9929-8360, Fax: +613-9662-3859

Robyn H. Guymer, Niro Narendran, Paul N. Baird

Centre For Eye Research Australia, University of Melbourne, 1st Floor Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne 3002, Australia

Chapter 5

Ronald Klein

Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, Madison, WI, USA
e-mail: kleinr@epi.ophth.wisc.edu, Tel.: +1-608-263-0280, Fax: +1-608-263-0279

Chapter 6

Zheng Qin Yin, Meidong Zhu, Wen Shan Jiang

Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, 40038, Chongqing, Peoples Republic of China

Meidong Zhu

Save Sight Institute, University of Sydney, NSW 2006, Sydney, Australia
e-mail: zqyin@mail.tmmu.com.cn, Tel.: +86-23-6875-4401, Fax: +86-23-6875-3686

Chapter 7

Ray F. Gariano

Department of Ophthalmology, Stanford University School of Medicine 330 Pasteur Dr., Palo Alto, CA 94305, USA
Santa Clara Valley Medical Center, Santa Clara, CA, USA
e-mail: Ray.Gariano@hhs.co.santa-clara.ca.us, Tel.: +1-408-885-6775, Fax: +1-408-885-7166

Chapter 8

David V. Pow, Robert K.P. Sullivan, Susan M. Williams

School of Biomedical Sciences, University of Queensland, Australia
e-mail: d.pow@mailbox.uq.edu.au, Tel.: +7-33654086, Fax: +7-33651766

Elizabeth WoldeMussie

Department of Biological Sciences, Allergan Inc., Irvine, CA, USA
Chapter 9

Jonathan Stone, Krisztina Valter, Jan Provis, Philip Penfold

Biological Sciences, Australian National University, Canberra, Australia
E-mail: stone@rsbs.anu.edu.au, Tel.: +61-26125-3841, Fax: +61-26125-0758

Jonathan Stone, Kyle Mervin, Natalie Walsh, Krisztina Valter, Jan Provis

Department of Anatomy and Histology and Institute for Biomedical Research, University of Sydney, Australia

Jan Provis, Philip Penfold

Save Sight Institute, Department of Clinical Ophthalmology, University of Sydney

Chapter 10

Scott W. Cousins, Diego G. Espinosa-Heidmann

Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA

Karl G. Csaky

National Eye Institute, National Institutes of Health, Bethesda, MD, USA
E-mail: scousins@med.miami.edu, despinosa@med.miami.edu, Tel.: +1-305-326-6329, Fax: +1-305-326-6536
Macular Degeneration
Penfold, P.L.; Provis, J.M. (Eds.)
2005, XVIII, 202 p. 200 illus., 100 illus. in color.,
Hardcover
ISBN: 978-3-540-20058-1