## Contents

### Part I. Nonlinear Analysis Methods

1. **Preliminary Results** ................................................................. 3  
   1.1 Operators in Spaces Product ........................................ 3  
   1.2 Maximum Semimonotone Operators .................................. 21  
   1.3 Multi-valued Mappings .................................................... 29  

2. **Functionals and Forms** .......................................................... 49  
   2.1 Extreme Problems for Superposition Functionals ............... 49  
   2.2 T-Differentiable Functionals ........................................... 55  

3. **Nonlinear Operator Equations, Inclusions, and Variational Inequalities** .................................................. 67  
   3.1 Solvability and Some Properties of Solutions of Nonlinear Operator Equations ........................................ 67  
   3.2 Some Properties of the Solutions of Variational Inequalities .................................................. 86  

4. **Differential-Operator Equations and Inclusions** .................. 97  
   4.1 Functional Spaces ......................................................... 97  
   4.2 Differential-Operator Equations and the Properties of Their Solutions .................................................. 108  
   4.3 Differential-Operator Inclusions ....................................... 130  
   4.4 Differential-Operator Equations and Variational Inequalities. Properties of the Solutions ........ 136  

### Part II. Problems of Control by Distributed Parameter Objects

5. **Extremal Problems for Nonlinear Operator Equations and Variational Inequalities** .................................................. 151  
   5.1 The Conditions of Solvability of Extremal Problem ............. 152  
   5.2 Non-coercive Extremal Problems for Operator Equations ....... 172
5.3 Weak Expansion of Extremal Problems for Operator Equations and Variational Inequalities .......... 181
5.4 Regularization and Approximated Solutions .................. 196
5.5 The Necessary Optimality Conditions in Form of Variational Inequalities ...................... 213
5.6 Finite-Dimensional Approximations ......................... 237

6. Optimal Control for Differential-Operator Equations and Inclusions ........................................ 251
6.1 The Conditions of Solvability of the Optimal Control Problem ........................................... 253
6.2 Optimal Control for Differential-Operator Inclusions .............. 280
6.3 Necessary Conditions of Control Optimality in the Form of Variational Inequalities ............... 290
6.4 Regularized and Approximate Solutions of the Extremal Problem ........................................... 299
6.5 Finite-Dimensional Approximations ......................... 324
6.6 Some Problems of Optimal Control in Modified Systems of Navier-Stokes Equations and Reaction-Diffusion Equations .................... 334

7. Some Problems of Synthesis in Distributed Parameter Systems .......................... 351
7.1 The Problem of Attracting Sets Synthesis in Distributed Parameter Systems ..................... 353

8. Control of Heat Transfer and Diffusion Processes ........................................... 363
8.1 Construction of a Mathematical Model of Nonlinear Heat Transfer Process of Two-Phase Media ...... 363
8.2 Analysis of Stationary Modes ........................................... 365
8.2.1 Study of the Solvability of Dirichlet Problem ...................... 365
8.2.2 Solvability of the Mixed Boundary Value Problem ................ 375
8.3 Solvability of the Dynamic System .............................. 382
8.3.1 Study of the Solvability of the First Initial-Boundary Value Problem ...................... 383
8.3.2 Solvability of the Mixed Initial-Boundary Value Problem ...................... 388
8.4 Statement of the Main Optimization Problems ........................... 391
8.5 Solvability of the Control Problem of Nonlinear Heat Transfer Stationary Mode .................. 395
8.5.1 Solvability of the Control Problem on the Solutions of the Dirichlet Boundary Value Problem ...................... 395
8.5.2 Solvability of the Control Problem on Solutions of the Mixed Boundary Value Problem ...................... 403
8.6 Accounting for the Restrictions by Means of Variational Inequalities .......................... 405
8.7 The Necessary Conditions of Optimal Control ...................... 414
8.8 Solvability of the Control Problem for Dynamic Mode of Nonlinear Heat Transfer .............................. 420
8.9 Accounting for the Phase Restrictions by Means of Penalty Approximations ...................... 423
8.10 The Necessary Optimality Conditions of Dynamic Modes Control .............................. 427

  9.2 Unilateral (One-Directional) Physical Processes in Industry and Natural Environment and Their Mathematical Description ...................... 435
    9.2.1 Examples of Unilateral Physical Processes ...................... 435
    9.2.2 Classification of Unilateral Physical Processes ...................... 436
    9.2.3 Mathematical Formalization of Unilateral Physical Processes in the Form of Variational Inequalities .............................. 438
  9.3 Problems of Mathematical Description and Computational Realization of Single-Valued Physical Processes ...................... 445
  9.4 Problems of Control of the Unilateral Physical Processes .............................. 448

  10.1 Mathematical Formalization of the Unilateral Processes of Diffusion and Heat-Mass Transfer in the Form of Variational Inequalities .............................. 451
  10.2 Computational Realization of Variational Inequalities .............................. 455
    10.2.1 Class of Continuously Differentiable Functionals $\psi_1^1$ .............................. 456
    10.2.2 Class of Finite Functionals $\psi_2^2$ Not Possessing the Continuous Differentiability Property .............................. 463
    10.2.3 Class of the Functionals $\psi_3^3$ Taking the Value $+\infty$ .............................. 472
  10.3 Examples of Realization of the Typified Unilateral Problems Based on Physical Processes of Diffusion and Heat-Mass Transfer .............................. 486
    10.3.1 The Example of Realization of the Unilateral Problem for the Case of the “Thick” Wall with the Unilateral Direct Conductivity .............................. 486
XIV Contents

10.3.2 The Example of the Unilateral Problem Realization
  for the Case of the Processes
  with a “Soft” Upper Obstacle ........................... 489
10.4 The Computer Realization
  of the Unilateral Processes Mathematical Models ........... 491
  10.4.1 The Finite Differences Method ....................... 492
  10.4.2 Application of the Modified Net Methods
  for Solution of the Matrix Model ....................... 495
10.5 The Numerical Researching of the Realization Algorithms
  of the Unilateral Processes Models ....................... 499

References .................................................... 501
Nonlinear Analysis and Control of Physical Processes and Fields
Zgurovsky, M.; Melnik, V.S.
2004, XIV, 508 p., Hardcover
ISBN: 978-3-540-14019-1