X Contents

4.5 Integral Equation for Source and Perturbative Treatment
 of MBCs .. 29
4.6 Summary ... 30

5 Application of Boundary Scattering Formulation
 with Dual EM Potential to EM Near-Field Problem 31
 5.1 Boundary Effect and Retardation Effect 31
 5.2 Intuitive Picture Based on Dual Ampere Law
 under Near-field Condition 33
 5.3 Application to a Spherical System: Numerical Treatment ... 35
 5.4 Correction due to Retardation Effect 36
 5.5 Summary ... 40

6 Summary and Remaining Problems 41

7 Theoretical Formula for Intensity of Far Field, Near Field
 and Signal in NOM .. 42
 7.1 Field Intensity for Far/Near Field 42
 7.2 Theoretical Formula for the Signal Intensity in NOM 43

8 Mathematical Basis of Boundary Scattering Formulation 44
 8.1 Boundary Charge Density and Boundary Condition 44
 8.2 Boundary Magnetic Current Density
 and Boundary Condition 49

9 Green’s Function and Delta Function in Vector Field Analysis . 52
 9.1 Vector Helmholtz Equation 52
 9.2 Decomposition into Longitudinal
 and Transversal Components 53

References .. 56

Excitonic Polaritons in Quantum-Confined Systems
 and Their Applications to Optoelectronic Devices
T. Katsuyama, K. Hosomi 59

1 Introduction ... 59

2 Fundamental Aspects of Excitonic Polaritons
 Propagating in Quantum-Confined Systems 61
 2.1 The Concept of the Excitonic Polariton 61
 2.2 Excitonic Polaritons in GaAs Quantum-Well Waveguides:
 Experimental Observations 63
 2.3 Excitonic Polaritons in GaAs Quantum-Well Waveguides:
 Theoretical Calculations 68
 2.4 Electric-Field-Induced Phase Modulation
 of Excitonic Polaritons in Quantum-Well Waveguides 74
 2.5 Temperature Dependence of the Phase Modulation
 due to an Electric Field 82
 2.6 Cavity Effect of Excitonic Polaritons
 in Quantum-Well Waveguides 85

3 Applications to Optoelectronic Devices 89
XII Contents

3.4 Two-Step Photoionization
 with Two-Color Near-Field Lights 163

3.5 Blue-Fluorescence Spectroscopy
 with Two-Color Near-Field Lights 168

4 Guiding Cold Atoms through Hollow Light
 with Sisyphus Cooling 171
 4.1 Generation of Hollow Light 172
 4.2 Sisyphus Cooling in Hollow Light 173
 4.3 Experiment .. 176
 4.4 Estimation of Atom Flux 178

5 Outlook .. 179

References ... 181

Index .. 187
Progress in Nano-Electro-Optics II
Novel Devices and Atom Manipulation
Ohtsu, M. (Ed.)
2004, XIII, 192 p., Hardcover
ISBN: 978-3-540-05042-1