Contents

List of frequently used symbols and abbreviations .. XIII

Part I
Stationary Contacts

§ 1. Introduction. A simplified summary of the theory of stationary electric contacts ... 1

§ 2. The contact surface ... 7

§ 3. The contact resistance. General theory .. 9

§ 4. Calculation of constriction resistances with constant resistivity \(\rho \) in an isotropic material ... 11

Problem A. 13 – Problem B. 14 – Problem C. Constriction resistance of an elliptic spot. 14 – Problem D. 15 – Problem E. 17 – Problem F. The influence of the elliptic shape of the contact area on the constriction resistance expressed by a shape factor. 18

§ 5. Constriction resistances when conditions deviate from those in § 4, but with \(\rho \) still a constant ... 19

Problem A. 20 – Problem B. The constriction resistance of one member when the a-spot is covered with a film. 20 – Problem C. Multi-spot metallic contact referred to a semi-infinite member. 21 – Problem D. 23 – Problem E. 24 – Problem F. 24 – Problem G. Distorted constrictrons. 25 – Problem H. 26 – Problem I. 26

§ 6. Introduction to thin films on contacts. Contact cleaning 27

§ 7. The load bearing contact area as a function of load and elastic and plastic properties of the members .. 29

A. Introduction. 29 – B. Flat Contact. 30 – C. Experimental determination of \(A_p \). 32 – D. Persistence of asperities in indentations. 37 – E. Influence of temperature and contact duration on the contact area. 37 – F. Special application of Eq. (1.23) concerning creep in contacts. 39

§ 8. The relation between contact load and resistance, particularly at moderate and high load ... 40

A. Introduction with description of Fig. (8.01). 40 – B. Crossed rod contacts. 42 – C. Explanation of the dashed lines in Fig. (8.01). 44 – D. Diversified resistance measurements. 46 – E. Use of Diagram (8.01) in practice. 47 – F. Practically clean contacts, preloaded with a high P. 47

§ 9. Contact resistance on freshly cleaned rods in air at very small contact loads ... 48

A. Observations on gold and silver. 48 – B. Observations on carbon contacts. 50 – C. Method of wire probes for exploring contact surfaces. 52
VI

Contents

§ 10. The inductance of a current constriction. Skin effect ... 32
 A. Inductance. 52 – B. The skin effect. 54

§ 11. Electrodynamic repulsion in a symmetric contact of non-magnetic material 55

§ 12. The capacitance of a contact. Electrostatic attraction in a contact 57
 Example A. Crossed rod metallic contact. 58 – Example B. 59 – Example C. JOHNSEN-RAABEK effect. 60

§ 13. The relationship between electric potential and temperature in a current constriction which is symmetric with respect to the contact surface; that is, the ϕ-θ relation .. 61

§ 14. The ϕ-θ relation in cases of dissymmetry .. 64
 Case A. 64 – Case B. Contact between electrodes differing in ϕ and θ. 65 – Case C. 65 – Case D. Heat flows across contact surface. 67 – Case E. 67 – Case F. Thomson effect. 67 – Case G. 68

§ 15. Influence of a thin film in the contact on the ϕ-θ relation. KOHLER effect 69

§ 16. The influence of the Joule heat on constriction resistances in symmetric contacts .. 71
 Example A. with W-F law. 74 – Example B. Heat flows across contact surface. 75 – Example C. Integration of Eq. (18.62) without using WIEDERMANN-FRANZ law. 77

§ 17. Distribution of the temperature in a symmetric constriction with circular contact surface at given current 78
 Example A. 78 – Example B. 79 – Example C. 80

§ 18. The (equilibrium) temperature distribution in the constriction of a contact between two metals with different conductivities, both obeying WIEDERMANN-FRANZ law. Thermoelectric effects .. 80
 A. Features of the thermoelectric effects. 80 – B. The problem of temperature distribution in the case of PELTIER heat in the contact. 82

§ 19. Temperature distribution in the constriction of a contact between members of very different conductivities .. 85

§ 20. Resistance-voltage characteristics of clean symmetric contacts. Softening and melting voltages ... 87

§ 21. Development of the temperature in a metallic current constriction 92
 A. Introduction. 92 – B. Survey of the problems. 93 – C. Discussion of the diagrams for the different cases. 96 – Case A. Symmetric contact heated by the current throughout the constriction. 96 – Case B. Contact heated by the current. The members have very different conductivities. 96 – Case C. A semi-infinite body at rest, with a circular heat source. 97 – Case (A and B) for very small z-values. 98 – Case M. Heat source moving on the surface of a semi-infinite body. 99 – D. Cooling of a previously heated contact constriction. 100 – E. Examples. 100
§ 22. Growth of films on metals used for contacts, near room temperature........ 102

§ 23. Growth of visible oxide films on metals at moderate to high temperature. Decomposition at still higher temperature................................. 111

§ 24. Water film, local cells and rusting ... 114
 A. Thickness of water films. 114 – B. Rusting by means of electrochemical attack. 115

§ 25. Alien solidified films on contacts .. 116

§ 26. Tunnel effect... 118
 A. Introduction. 118 – B. General results in the case of room temperature and less. 122 – C. Details of observations on the tunnel effect at room and lower temperature. 123 – D. Evaluation of film thickness, based on measured σ, for the case of small σ. 125 – E. Observations on tunneling at room temperature through relatively thick films, 25 Å and more. 126 – F. Tunneling between dissimilar metal members. 128 – G. The superconductivity of contacts, particularly contacts with a film which is penetrable via tunnel effect. 128 – H. Type III, field emission. Influence of relatively high temperatures on the tunnel effect. – 130 – I. Tunnel effect when both electrodes are of the same semiconducting material. 131 – J. Tunnel current across a gap that surrounds a metallic contact consisting of a circular spot with the radius a. 132 – K. Tunneling within a semiconductor. 134

§ 27. Fritting of tarnish films .. 135

§ 28. Adherence in dry contacts which are not heated to any influential extent by the current... 153
 A. Introduction and theory. 153 – B. Experimental verification. 155 – C. Location of the weld break. 158 – D. The practical significance of the adherence in non-heated contacts. 159

§ 29. Adherence in contacts that are heated by the current passing through them. Resistance welding ... 160

§ 30. About stationary contacts in practice....................................... 164
Contents

§ 31. Dimensioning a contact with respect to its heating 176

§ 32. Contact effects in carbon granular microphones 180
 A. Introduction. 180 – B. Configuration of the transmitter. 180 – C. Cal-
 culations of the a.o. power of a microphone. 181 – D. Deterioration by
 “burning” of microphone granules during the life of the transmitter. 184

§ 33. Contact with semiconductors. Rectification. Static electrification 185
 A. Introduction. 185 – B. Contact between a metal and a semiconductor,
 and its rectification property. 185 – C. The p-n-junction. 187 – D. The
 silicon controlled rectifier. 188 – E. Remark concerning the contact be-
 tween silicon carbide crystals. 189 – F. Static electrification. 189

§ 34. Carbon-pile rheostats. Electric resistance of pressed metal powders. 190

Part II

Thermal Contacts

§ 35. Thermal metallic contacts ... 193
 A. Introduction. 193 – B. Bilateral heat current. 193 – C. Thermal resis-
 tance of nominally flat bolted contacts. Examples. 194

Part III

Sliding Contacts

§ 36. Survey of fundamentals ... 199
 A. Introduction. 199 – B. The geometry of a nominally flat sliding con-
 tact. 199 – C. Experiments. Type II. 202 – D. Experiments when Type I
 would be approached. 204

§ 37. Sliding contacts in air ... 205

§ 38. Boundary lubrication .. 209
 A. Features of boundary lubrication. 209 – B. Discussion of two competing
 theories of boundary lubrication. 213 – C. Lubricating practice. 218 –
 D. The BILDER layer. 218 – E. Boundary-lubricated separable contacts
 including some sliding metal-metal contacts. 219 – F. Properties required
 of bearing materials. 220 – G. Ball bearings. 221

§ 39. Theory of friction and wear of carbon contacts. Lubrication by means of
 solid lubricants as graphite and molybdenum disulfide 221
 A. Introduction. 221 – B. Bond strength in a sliding contact between
 graphite members. 223 – C. The high altitude effect. 225 – D. Adjuvants.
 227

§ 40. Stick-slip motion. The temperature in currentless sliding contacts 228
 A. Stick-slip or jerky motion. 228 – B. The temperature in currentless slid-
 ing contacts. 230

§ 41. Frictional wear in metallic contacts without current A. Types of wear.
 232 – B. Details of the formation of wear detritus. 234 – C. The influence
 of adhesive wear on friction in clean metallic contacts. 235 – D. Why
liquids, even the deposit from air humidity, are able to strongly influence wear, without appreciably affecting the friction coefficient. 235 – E. Frictional wear in currentless sliding contacts; represented by Z which is calculated according to Eq. (41.03) as a function of the hardness, H, of the softer member. 236 – F. Size and frequency of wear fragments appearing during periods of adhesive wear. 240 – G. Behavior of sliding contacts of measuring apparatus. 242

§ 42. Electrical performance of carbon brushes on rings and commutators when arcing is excluded. .. 242

A. Introduction. 242 – B. Early investigations about the conduction mechanism in the brush-ring (copper) contact. 243 – C. Polarity effect in the contact between a graphite brush and a copper ring. 245

§ 43. The temperature in the sliding contact between a carbon brush and a copper ring or commutator .. 249

§ 44. Friction and wear with a carbon-brush collector contact 251

§ 45. Theory of commutation with special regard to voltage flashes and arcs . 260

A. Fundamental equations. 260 – B. A first integral. 262 – C. Arcing during unbalanced commutation. 263 – D. Energy dissipated in arcs and voltage flashes. 264 – E. Each brush makes contact with more than two segments. 266 – F. The importance of the elasticity of the brush for the commutation. 266 – G. About so-called short-circuit current in the brush. 267

§ 46. Current collectors for trolley cars ... 268

§ 47. Electric noise in contacts ... 269

A. The thermal noise. 269 – B. Shot noise. 270 – C. The specific contact noise. 270 – D. Contact trembling or agitation. 272 – E. Noise generated by sudden changes in, or interruptions of, the contact. 272

Part IV

Electric Phenomena in Switching Contacts

§ 48. Introduction ... 274

§ 49. Ignition of arcs in switches .. 275

A. Introduction. 275 – B. Electrical breakdown in the gap between metallic electrodes at atmospheric pressure. 275 – C. Drawing of arcs. 278. – D. Arc ignition followed by floating. 278

§ 50. VI-characteristics of the stationary arc in air; their use for calculation of the duration of drawn short arcs .. 279

A. Introduction. 279 – B. Observations on breaking contacts in an ohmic circuit. 281 – C. Simplified VI-characteristics for different metals with known I_m and for small currents. 283 – D. Use of the resistance line together with arc characteristics for the problem of how a constant current is shared between an arc and an ohmic resistance both in parallel. 283
Contents

§ 51. Vacuum arc; particularly its extinction .. 286
 A. Introduction. 286 – B. The duration of the vacuum arc. 286 – C. Current chopping by vacuum arcs. 289

§ 52. Interrupting an a.c. current ... 290

§ 53. Breaking direct current .. 297

§ 54. Electric oscillations generated by d.c. arcs 298

§ 55. Bouncing ... 300

§ 56. Material transfer in switching contacts. A survey 304
 A. Definition of the major types of material transfer. 304 – B. Concerning the amount of arc transfer, particularly from the cathode. 306 – C. Arc quenching. 311 – D. Mechanical wear produced by the hammering effect of switching contacts. 315

§ 57. Discharge transients ... 313

§ 58. Arc duration during contact closure with voltages below 200 to 300 V . . . 316
 A. Introduction. 316 – B. Calculation with respect to the wiring diagram (58.02) with initially charged capacity. 316 – C. Inductance l = 0 (thus \(\beta = 0 \)) in the circuit (58.02). 319 – D. A battery instead of C. equivalent to \(C = \infty \); finite l. 320

§ 59. Floating ... 320

§ 60. Arc duration on breaking contact without quenching. Circumstances common to Communication Engineering................................. 323
 A. Ohmic circuit according to Fig. (60.01). Arc extinction in air during a steady increase of the gap. 323 – B. Inductive circuit in air according to Fig. (60.04). Capacity of the leads is neglected. 323 – C. The quantity of electricity that flows through a drawn arc. 325

§ 61. Quenching a drawn arc by means of a capacitor, parallel to the contact . . 325
 A. General theory. 325 – B. A short description of the process. 327 – C. Note concerning the position of \(r \). 328

§ 62. Capacitive quenching when an arc with a very small duration or no arc is drawn .. 329
 A. Equations. 329 – B. Condition for no breakdown of the gap between the separating electrodes. 331 – C. Example. 331

§ 63. Quenching of arcs by a resistance parallel to the operating contact or to the inductive coil .. 332
 A. Quenching with \(r \) in position a. 332 – B. Arc quenching with \(r \) in position b. 334

§ 64. Details about the types of arc in relay contacts and the material transfer produced by them ... 334
 A. Survey. 334 – B. Result of measurements. 335 – C. The critical length, \(s_{cr} \), of the anode dominated arc. 336
Contents

§ 65. Bridge transfer and short arc transfer at contact separation 338
A. Introduction, 338 - B. A classical example of a long liquid bridge, 339 -
C. Methods of determination of the rate of transfer, 341 - D. Results of
measurements and their interpretation, 342

§ 66. Theory of the bridge transfer ... 347
A. Introduction, 347 - B. Bridge transfer because of the THOMSON effect,
Theory, 348 - C. THOMSON effect, Comparison with measurements, 351 -
D. KÖHLER effect, 353 - E. Comparison with measurements, 353 - F. For
completeness we calculate the material transfer as it could be produced by
the PELTIER effect, 353 - G. Remark, 354 - H. Remark, 354

§ 67. Bridge material transfer in the shape of pipes and spires 354

§ 68. Mercury switches ... 356
A. Introduction, 356 - B. Medium duty switches, with a pool of mercury
forming one electrode, 357 - C. Mercury wetted contacts, 358 - D. Mercury
between the members of a sliding contact, 358

§ 69. Application of statistics to contact operations ... 359
A. Reliability of contacts, 359 - B. Some numerical results of tests, 361 -
C. Effect of twin contacts, 361

§ 70. The choice of contact material; contact shape for practical applications 362
A. Permanent contacts, 363 - B. Microcontacts, 363 - C. Relay contacts with
high repetitive operation, 364 - D. Light duty relays for medium frequen-
cies, 364 - E. Medium duty circuit breakers and contactors, 365 - F. Heavy
duty circuit breakers with up to thousands of amperes and volts, 365 -
G. Sliding contacts for resistors and apparatus, 366

Appendices

§ I. Elasticity, plasticity and hardness ... 367
A. Introduction, 367 - B. HERTZ' formulas for ideally elastic indentations,
367 - C. Plastic deformations, Dislocations, 369 - D. Mathematics of
plastic yielding, 370 - E. Indentation in an isotropic semi-infinite body,
produced by a spherical indenter (ball), 371 - F. The ball and pyramid
indentation tests, Hardness, 372 - G. Influence of friction on the indenta-
tion, 377 - H. Diffusion effects, 377 - I. The work consumed by a plastic
deformation, Examples, 378

§ II. Electronic conduction in solids ... 380
A. Introduction, 380 - B. General concepts concerning conduction,
380 - C. Quantization of the electrons in a crystal and the constitution of
a band, 381 - D. Influence of the temperature on the distribution (or
partition) of electrons on cells in metals, 382 - E. Current carriers in se-
miconductors, 384 - F. Mobility of current carriers, Resistance, 386 -
G. Surface potential barrier of a metal, Thermionic emission of electrons
387 - H. Equilibrium in a contact between metals A and B with different
work functions $\Phi_A > \Phi_B$, 389 - I. Metal-semiconductor contact, 390

§ III. Heat conduction. WIEDEMANN-FRANZ law (WF-law) 395
A. Heat capacity, 393 - B. Thermal conduction, 395 - C. WIEDEMANN-
FRANZ law (WF-law), 396
Contents

§ IV. Probability. Noise ... 397

§ V. Structure, electrical and thermal conductivity of carbons 404
 C. Graphitization. 407 – D. Electrical conductivity of carbons. 408 – E.
 Heat conductivity of carbons. 410

§ VI. Hydrodynamic or thick film lubrication................................. 412

§ VII. Metal whiskers ... 417
 A. Whiskers formed from the solid metal. 417 – B. Whiskers rapidly formed from metal vapor. 417 – C. Mechanical and magnetic properties of whiskers. 418 – D. Metallic dendrites in semiconductors. 418

§ VIII. Some fundamental formulas concerning electric discharges 419
 A. Introduction. Kinetic fundamentals. 419 – B. Drift velocity. 420 –
 C. Thermal ionization. Saha's equation. 420 – D. Plasma. 421 – E. Current in vacuum restricted by the space charge of the current carriers 422

§ IX. Theory of the electric arc ... 423

§ X. Tables .. 436

§ XI. Diagram XI in two copies, one detachable 441

Author and literature index .. 443

Subject index .. 477

Errata ... 483
Electric Contacts
Theory and Application
Holm, R.
1967, XV, 484 p., Hardcover
ISBN: 978-3-540-03875-7