Contents

Foreword – Donn J. Kushner and His Contributions to the Study of Halophilism .. 1
Morris Kates

Introductory Chapter: Half a Lifetime in Soda Lakes 17
William D. Grant

1 Trophic Ecology of Solar Salterns .. 33
Carlos Pedrós-Alió

1.1 Introduction ... 33
1.2 Descriptive Biological Studies of Salterns 34
1.2.1 From Seawater to the Halite Domain 34
1.2.2 Beyond the Halite Domain 36
1.3 Quantitative Biological Studies in Salterns 37
1.3.1 Systems Considered ... 37
1.3.2 Phytoplankton and Primary Production 38
1.3.3 Heterotrophic Prokaryotic Plankton and Its Activity 39
1.3.4 Grazing on Phytoplankton 42
1.3.5 Grazing on Heterotrophic Prokaryotic Plankton 44
1.3.6 Viruses ... 44
1.4 Salterns as Model Systems ... 45
References .. 46

2 Microbial Molecular and Physiological Diversity in Hypersaline Environments ... 49
Carol D. Litchfield

2.1 Introduction ... 49
2.2 Physiological/Metabolic Diversity 49
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Lipid Analyses</td>
<td>49</td>
</tr>
<tr>
<td>2.2.2 Radiolabelled Substrates</td>
<td>51</td>
</tr>
<tr>
<td>2.2.2.1 ¹⁴C-Labelled Substrate Studies</td>
<td>51</td>
</tr>
<tr>
<td>2.2.2.2 Tritiated Thymidine and Leucine Studies</td>
<td>52</td>
</tr>
<tr>
<td>2.2.3 Whole Community Metabolic Analyses</td>
<td>53</td>
</tr>
<tr>
<td>2.2.4 Stable Carbon Isotope Studies</td>
<td>54</td>
</tr>
<tr>
<td>2.3 Molecular Diversity</td>
<td>54</td>
</tr>
<tr>
<td>2.3.1 16S rDNA Investigations</td>
<td>55</td>
</tr>
<tr>
<td>2.3.1.1 Solar Salterns</td>
<td>55</td>
</tr>
<tr>
<td>2.3.1.2 Other Hypersaline Waters</td>
<td>57</td>
</tr>
<tr>
<td>2.4 Conclusions</td>
<td>58</td>
</tr>
<tr>
<td>References</td>
<td>59</td>
</tr>
<tr>
<td>3 Red, Extremely Halophilic, but not Archaeal: The Physiology and Ecology of Salinibacter ruber, a Bacterium Isolated from Saltern Crystallizer Ponds</td>
<td>63</td>
</tr>
<tr>
<td>Aharon Oren, Francisco Rodríguez-Valera, Josefa Antón, Susana Benlloch, Ramon Rosselló-Mora, Rudolf Amann, Julie Coleman, Nicholas J. Russell</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>63</td>
</tr>
<tr>
<td>3.2 Occurrence of Halophilic Bacteria in Spanish Saltern Crystallizer Ponds</td>
<td>65</td>
</tr>
<tr>
<td>3.3 Isolation and Characterization of Salinibacter ruber from Saltern Brines</td>
<td>66</td>
</tr>
<tr>
<td>3.4 Comparison of 16S rRNA Sequences from Salinibacter Cultures and Environmental Sequences</td>
<td>68</td>
</tr>
<tr>
<td>3.5 Physiological Properties of Salinibacter ruber</td>
<td>70</td>
</tr>
<tr>
<td>3.6 Characterization and Quantitation of the Salinibacter Pigment in Cultures and in Saltern Crystallizer Ponds</td>
<td>71</td>
</tr>
<tr>
<td>3.7 Final Comments</td>
<td>74</td>
</tr>
<tr>
<td>References</td>
<td>74</td>
</tr>
<tr>
<td>4 The Potential Use of Signature Bases from 16S rRNA Gene Sequences to Aid the Assignment of Microbial Strains to Genera of Halobacteria</td>
<td>77</td>
</tr>
<tr>
<td>Masahiro Kamekura, Toru Mizuki, Ron Usami, Yasuhiko Yoshida, Koki Horikoshi, Russell H. Vreeland</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>77</td>
</tr>
<tr>
<td>4.2 Differentiation of Halobacteria at the Generic Level</td>
<td>77</td>
</tr>
</tbody>
</table>
Physiological and Molecular Responses of *Bacillus subtilis* to Hypertonicity: Utilization of Evolutionarily Conserved Adaptation Strategies

Gudrun Holtmann, Clara D. Boiangiu, Jeanette Brill, Tamara Hoffmann, Anne U. Kuhlmann, Susanne Moses, Gabriele Nau-Wagner, Nathalie Pica, Erhard Bremer

7.1 Introduction

7.2 The Cell and the Surrounding Solvent

7.3 Microbial Strategies for Coping with Hyperosmotic Environments

7.4 Compatible Solutes: Characteristics and Physiological Functions

7.5 The Initial Stress Response of *B. subtilis*: Uptake of K+ through Biosynthesis

7.6 Accumulation of Compatible Solutes by *Bacillus* spp. through Biosynthesis

7.6.1 Osmoregulatory Synthesis of Proline

7.6.2 Osmoregulatory Synthesis of Ectoine

7.6.3 Osmoregulatory Synthesis of Glycine Betaine from Choline

7.7 Acquisition of Preformed Compatible Solutes by *B. subtilis* from Environmental Resources

7.8 Expulsion of Compatible Solutes: Protection Against Extreme Turgor

7.9 Perspectives

References

Genetics of Osmoadaptation by Accumulation of Compatible Solutes in the Moderate Halophile *Chromohalobacter salexigens*: Its Potential in Agriculture Under Osmotic Stress Conditions

Carmen Vargas, Maria-Isabel Calderon, Nieves Capote, Rocío Carrasco, Raúl García, María Jesús Moron, Antonio Ventosa, Joaquín J. Nieto

8.1 Introduction

8.2 *C. salexigens* as a Model Organism for Osmoadaptation Studies in Moderate Halophiles

8.3 Osmoadaptation Mechanisms in *C. salexigens*

8.3.1 Uptake of Osmoprotectants

8.3.2 *De Novo* Synthesis of Compatible Solute

8.4 Transcriptional Regulation of the *C. salexigens* *ect* Genes

8.5 Overlapping Regulatory Networks Controlling the Intracellular Content of Compatible Solutes
8.6 Use of *ect* Genes for the Generation of Transgenic Agriculturally Important Organisms

8.6.1 Compatible Solutes Synthesis Genes as a Tool for the Production of Salt-Tolerant Crops

8.6.2 Metabolic Engineering of Beans to Generate Osmotic-Stress-Resistant Varieties

References

9 Osmoregulated Solute Transport in Halophilic Bacteria

HANS JÖRG KUNTE

9.1 Introduction

9.2 Compatible Solute Transport Systems of Nonhalophiles

9.3 Osmosensing by Osmoregulated Transporters

9.4 Osmoregulated Transport Systems in Halophilic Bacteria

9.4.1 TeaABC is an Osmoregulated TRAP-Transporter

9.4.2 TeaABC is a Recovery System for the Compatible Solute Ectoine

References

10 Molecular and Functional Adaptations Underlying the Exceptional Salt Tolerance of the Alga *Dunaliella salina*

A. ZAMIR, M. AZACHI, U. BAGESHWAR, M. FISHER, I. GOKHMAN, L. PREMKUMAR, A. SADKA, T. SAVCHENKO

10.1 Introduction

10.2 Results

10.2.1 Salt Induction of Fatty Acid Elongase and Membrane Lipid Modifications

10.2.1.1 A Salt-Inducible β-Ketoacyl-CoA Synthase

10.2.2 Unique Salt Tolerance of Extracellular *Dunaliella* Proteins

10.2.2.1 The 60-kDa Dca (Duplicated Carbonic Anhydrase)

10.2.2.2 A 30-kDa Carbonic Anhydrase (p30)

10.3 Discussion

10.3.1 Proposed Role of Intracellular Membranes Modification in Salt Tolerance of *Dunaliella*

10.3.2 The Significance and Basis of Salt Tolerance of Extracellular Carbonic Anhydrases

References
11 Multienzyme Complexes in the Archaea: Predictions from Genome Sequences
Michael J. Danson, David J. Morgan, Alex C. Jeffries, David W. Hough, Michael L. Dyall-Smith

11.1 Introduction ... 177
11.2 Dihydrolipoamide Dehydrogenase and Lipoic Acid in the Halophilic Archaea 179
11.2.1 Enzymological Studies 179
11.2.2 Detection of Lipoic Acid 179
11.3 2-Oxoacid Dehydrogenase Genes in the Halophilic Archaea ... 180
11.3.1 Homologous Expression of DHLipDH in Haloferax volcanii .. 180
11.3.2 A 2-oxoacid Dehydrogenase Complex Operon ... 180
11.3.3 Identification of the Genes and Structural Predictions of Their Protein Products 181
11.4 Functional Studies in Haloferax volcanii .. 183
11.4.1 Transcription ... 183
11.4.2 Knock-Out Mutants 183
11.5 2-Oxoacid Dehydrogenase Complex Genes in Other Archaea ... 184
11.5.1 Halobacterium sp. NRC-1 185
11.5.2 Aerobic Thermophilic Archaea: Thermoplasma, Aeropyrum and Sulfolobus 186
11.5.3 Anaerobic Thermophilic Archaea: Pyrococcus, Archaeoglobus and the Methanogens 187
11.6 Concluding Remarks 188
References ... 189

12 Nitrate Assimilation in Halophilic Archaea
María J. Bonete, Frutos C. Marhuenda-Egea, Carmen Pire, Juan Ferrer, Rosa M. Martínez-Espinosa

12.1 Introduction ... 193
12.1.1 Nitrate Metabolism 193
12.1.2 Physiology of Nitrate Assimilation 195
12.2 Haloarchaeal Nitrate Reductases (Nas) 196
12.2.1 Assimilatory Nitrate Reductases (Nas) 196
12.2.2 Respiratory Membrane-Bound Nitrate Reductases (Nar) 197
12.2.3 Dissimilatory Periplasmic Nitrate Reductases (Nap) .. 198
12.3 Haloarchaeal Nitrite Reductases 199
12.4 Concluding Remarks 201
References ... 201
13 The Archaeal Cardiolipins of the Extreme Halophiles

Angela Corcelli, Veronica M. T. Lattanzio, Aharon Oren

13.1 Introduction ... 205
13.2 Two Cardiolipin Analogs in the Purple Membrane
of Halobacterium salinarum 207
13.3 Occurrence of Archaeal Cardiolipins
in Various Strains of Extreme Halophiles 210
13.4 The Role of Archaeal Cardiolipins in Extreme Halophiles ... 211
References ... 212

14 Understanding Archaeal Protein Translocation:
Haloferax volcanii as a Model System 215
Jerry Eichler, Zvia Konrad, Gabriela Ring

14.1 Introduction ... 215
14.2 An Overview of Archaeal Protein Translocation 215
14.2.1 Protein Targeting in Archaea 216
14.2.1.1 Archaeal SRP 216
14.2.1.2 FtsY, the Archaeal SRP Receptor 218
14.2.2 The Archaeal Translocon 218
14.2.2.1 SecYE .. 219
14.2.2.2 SecDF .. 219
14.2.2.3 The Tat Pathway 220
14.2.3 Archaeal Signal Peptidases 220
14.3 Biochemical Reconstitution of Archaeal
Translocation Using Haloferax volcanii as a Model System .. 221
14.3.1 Inverted Membrane Vesicles 221
14.3.1.1 Hfx. volcanii IMVs Are Inverted and Sealed 221
14.3.1.2 Hfx. volcanii IMVs Are Functional 223
14.3.2 The S-Layer Glycoprotein – A Reporter of Translocation .. 223
14.3.2.1 Maturation of the S-Layer Glycoprotein
Follows Translocation 223
14.3.2.2 The Basis of S-Layer Glycoprotein Maturation 224
14.3.2.3 A Role for Magnesium in S-Layer Glycoprotein Maturation .. 225
14.4 Conclusions and Future Directions 226
References ... 226
15 Gas Vesicle Genes in Halophilic Archaea and Bacteria
FELICITAS PFEIFER

15.1 Introduction .. 229
15.2 Comparison of Genes Involved in Gas Vesicle Formation 230
15.2.1 The Gas Vesicle Gene Clusters of Halophilic Archaea 230
15.2.2 The gvp Gene Clusters of Bacteria .. 234
15.3 Regulation of gvp Gene Expression in Halophilic Archaea 236
15.4 Conclusions .. 239
References .. 239

16 Extremely Halophilic Archaea: Insights into Their Response to Environmental Conditions
GUADALUPE JUEZ

16.1 Introduction to Haloarchaea and Their Specialized World 243
16.1.1 Extremely Halophilic Archaea and Their Habitat:
A Brief Presentation 243
16.1.2 Specialization of Haloarchaea for Life under Extreme Conditions 244
16.1.3 Haloarchaea Must Withstand Harsh Environmental Stresses 245
16.2 Haloarchaeal Mechanisms Involved in Environmental Responses Are Not Yet Completely Understood ... 245
16.3 Global Response: A Contribution to the Knowledge of Adaptation Mechanisms in Haloarchaea ... 246
16.3.1 Osmotic Balance as Main Limiting Factor in the Adaptation to Changing Osmotic Conditions ... 246
16.3.2 Hypoosmotic Stress: Hard Conditions for Haloarchaea 246
16.3.3 Specific Low- Versus High-Salinity Proteins, and General Stress Proteins 248
16.4 Adaptation to Osmotic Stress and to High Temperature Must Involve Certain Common Protection Mechanisms. A Possible Role of Molecular Chaperones 248
16.5 DNA Structure as a Global Regulatory Mechanism Allowing a Coordinate Response to Environmental Conditions ... 249
16.6 Future Perspectives 250
References .. 251
17 Genome Sequences of the Head-Tail Haloviruses
HF1 and HF2 ... 255
Sen-Lin Tang, Clare Fisher, Katrina Ngui,
Stewart D. Nuttall, Mike L. Dyall-Smith

References ... 261

18 Reporter Gene Systems for Halophilic Microorganisms . . . 263
Constantin Drainas

18.1 Introduction ... 263
18.2 Conventional Gene Reporters 264
18.3 Non-conventional Gene Reporters 265
18.4 Gene Reporters for Moderately Halophilic Bacteria 266
18.4.1 Use of inaZ as a Reporter in Moderately Halophilic Bacteria 266
18.4.2 Use of the gfp gene of the jelly fish Aequorea victoria as a reporter in Chromohalobacter salixigens 268
18.5 Gene Reporters for Halophilic Archea 268
18.5.1 Gene Reporter Systems in Moderately Halophilic Archaea . 268
18.5.2 Reporter Gene Systems in Extremely Halophilic Archaea . 269
18.6 Conclusions and Perspectives 270
References ... 270

19 Industrial Enzymes: Do Halophiles and Alkaliphiles
Have a Role to Play? ... 275
Brian E. Jones

19.1 Introduction ... 275
19.2 Industrial Enzymes ... 276
19.2.1 Industrial Enzymes: Safe Products 277
19.2.2 Environmental Sustainability 277
19.3 Laundry Enzymes ... 277
19.4 Textile Enzymes ... 281
19.5 Future Prospects ... 283
References ... 284
Extracellular Hydrolytic Enzymes Produced by Moderately Halophilic Bacteria

E. Mellado, C. Sánchez-Porro, S. Martín, A. Ventosa

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>285</td>
</tr>
<tr>
<td>20.2</td>
<td>Moderately Halophilic Bacteria as a Source of Extracellular Enzymes</td>
<td>286</td>
</tr>
<tr>
<td>20.2.1</td>
<td>Glycosyl Hydrolases: Amylases</td>
<td>287</td>
</tr>
<tr>
<td>20.2.2</td>
<td>Proteases</td>
<td>290</td>
</tr>
<tr>
<td>20.3</td>
<td>Future Prospects</td>
<td>292</td>
</tr>
<tr>
<td>References</td>
<td>293</td>
<td></td>
</tr>
</tbody>
</table>

Moderately Halophilic, Exopolysaccharide-Producing Bacteria

Emilia Quesada, Victoria Béjar, M. Rita Ferrer, Concepción Calvo, Inmaculada Llamas, Fernando Martínez-Checa, Soledad Arias, Cristina Ruiz-García, Rafael Páez, M. José Martínez-Cánovas, Ana del Moral

<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1</td>
<td>Introduction</td>
<td>297</td>
</tr>
<tr>
<td>21.1.1</td>
<td>Moderately Halophilic Bacteria</td>
<td>297</td>
</tr>
<tr>
<td>21.1.2</td>
<td>Microbial Exopolysaccharides</td>
<td>297</td>
</tr>
<tr>
<td>21.2</td>
<td>Studies on Exopolysaccharide-Producing, Halophilic Bacteria</td>
<td>299</td>
</tr>
<tr>
<td>21.2.1</td>
<td>Isolation of Strains</td>
<td>299</td>
</tr>
<tr>
<td>21.2.2</td>
<td>Taxonomy of Moderately Halophilic, Exopolysaccharide-Producing Bacteria</td>
<td>301</td>
</tr>
<tr>
<td>21.2.3</td>
<td>Exopolysaccharide Production</td>
<td>304</td>
</tr>
<tr>
<td>21.2.4</td>
<td>Chemical Composition of Exopolysaccharides Synthesised by Halophilic Microorganisms</td>
<td>305</td>
</tr>
<tr>
<td>21.2.5</td>
<td>Functional Properties of the Exopolysaccharides Produced by Halomonas eurihalina and Halomonas maura</td>
<td>306</td>
</tr>
<tr>
<td>21.2.6</td>
<td>Recent Genetic Studies on Exopolysaccharide-Producing, Halophilic Bacteria</td>
<td>308</td>
</tr>
<tr>
<td>21.3</td>
<td>Conclusions and Future Prospects</td>
<td>310</td>
</tr>
<tr>
<td>References</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>22 Biotransformation of Toxic Organic and Inorganic Contaminants by Halophilic Bacteria</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Brent M. Peyton, Melanie R. Mormile, Victor Alva, Celso Oie, Francisco Roberto, William A. Apel, Aharon Oren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.1 Introduction</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>22.2 Biodegradation and Biotransformation of Contaminants</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Under Hypersaline Conditions – A Literature Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.2.1 Biotransformation of Hydrocarbon Contaminants by Halophilic Bacteria and Archaea</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>22.2.2 Biotransformation of Aromatic Contaminants by Halophilic Bacteria, Archaea, and Eucarya</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>22.2.3 Biotransformation of Organophosphorus Contaminants by Halophilic Bacteria</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>22.2.4 Tolerance of Halophilic Bacteria and Archaea to Inorganic Contaminants</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>22.2.5 Biotransformation of Inorganic Contaminants by Halophilic Bacteria</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>22.3 Degradation of Polyaromatic Hydrocarbons in Great Salt Lake, Utah, and Soap Lake, Washington – Recent Results</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>22.4 Epilogue</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>328</td>
<td></td>
</tr>
</tbody>
</table>

Epilogue
Cum Grano Salis – Salt in the History and Life of Mankind.
An Overview with Emphasis on Europe 333
Hans G. Trüper

Subject Index

343
Halophilic Microorganisms
Ventosa, A.
2004, XXVII, 350 p., Hardcover
ISBN: 978-3-540-00926-9