Contents

1 **Introduction** .. 1
1.1 Main Theme ... 1
1.2 Motivations ... 1
1.3 Background ... 3
1.4 Structure of the Following Chapters 4

2 **Toward a Systems Science for Biological Systems** 7
2.1 Emergent Causality ... 7
2.1.1 Causality in Biological Systems 7
2.2 Viewpoint for Biological Systems 11
2.2.1 Units in Biological Systems 11
2.2.2 Emergence of Hierarchy in Complex Systems 13
2.2.3 Emergent Causality and Network 15
2.2.4 Self-Reference .. 16
2.2.5 Additive Systems .. 17
2.3 Using Analogy and Metaphor 18
2.3.1 Analogy and AI .. 20
2.3.2 Analogy and Systems Science 21
2.3.3 Analogy and the Immune System 22
2.4 Views Related to the Immunity-Based System 22
2.4.1 Artificial Intelligence 22
2.4.2 Artificial Life .. 24
2.4.3 Autopoiesis ... 24
2.5 Frame of Reference for Biological Systems 25
2.6 Summary and Conclusion ... 25

3 **The Immune System as an Information System** 27
3.1 Introduction ... 27
3.2 Preliminaries: an Overview of the Immune System 28
3.2.1 Categorization of the Immune System 29
3.2.2 “Players” and “Stage” of the Immune System 33
3.2.3 Specificity in Recognition 34
3.2.4 Diversity Generation Mechanism 38
3.2.5 The Immune System and Information Processing 39
3.3 The Immune System as a Network 40
 3.3.1 Network Theory of Jerne 41
 3.3.2 Linguistics (by Generative Grammar) Metaphor 44
3.4 The Immune System as an Adaptive System 45
 3.4.1 From “Instruction Theory” to “Selection Theory” 45
 3.4.2 Clonal Selection Theory of Burnet 45
 3.4.3 Different Modes of Information Transfer 47
3.5 The Immune System as a Self-Defining System 47
 3.5.1 The Self as a Metaphor 47
 3.5.2 Organismic View of Metchinikoff 49
3.6 Phylogenic Approach to the Immune System 50
 3.6.1 Inducible Defense 50
 3.6.2 Symbiotic Relation to Multicellular Organisms 51
3.7 The Immune System and Other Biological Systems 52
 3.7.1 The Nervous System 52
 3.7.2 Other Biological Defense Systems 54
3.8 Summary ... 54

4 Defining Immunity-Based Systems 55
 4.1 Introduction 55
 4.2 Concept of Immunity-Based Systems 56
 4.3 Self-Maintenance System 58
 4.3.1 Autopoietic Systems 59
 4.3.2 Reentrant Systems 59
 4.4 Distributed Systems 59
 4.4.1 Agent as Primitive 60
 4.4.2 The Immune System as a Dynamic Network 61
 4.5 Adaptive Systems 62
 4.6 Implications for Design 63
 4.6.1 Leaving Some Design Specification to the Environment 65
 4.6.2 Analogy with the Self and Nonself 66
 4.6.3 Analogy with Measuring Weight 66
 4.7 Designing the Immunity-Based System 67
 4.7.1 Models for IMBS 68
 4.7.2 Specifications for IMBS 69
 4.8 Related Works and Discussions 71
 4.9 Summary and Conclusion 74

5 A Self-Organizing Network Based on the Concept of the Immune Network 77
 5.1 Introduction 77
 5.2 Concept of a Network Model 78
 5.2.1 Specification and Description of a Basic Model 78
 5.2.2 Weighing by a Pair of Balances: a Network View 80
 5.2.3 The Self-Referential Character 83
5.3 Self-Organizing Network Model 83
5.4 Distributed Processing in the Network 85
5.5 Self-Organization in the Model ... 87
 5.5.1 Evaluation Among Agents 88
5.6 Restructuring of the Network .. 89
 5.6.1 Solving the Eight-Coin Problem 89
5.7 Related Works and Discussions 93
5.8 Summary and Conclusion ... 94

6 Sensor Networks Using the Self-Organizing Network 95
 6.1 Introduction .. 95
 6.2 Self-Nonself Counterparts in the Sensor Network 96
 6.3 Agents on the Sensor Network 97
 6.4 Dynamic Interaction Among Agents 98
 6.5 Extension of the Sensor Network 100
 6.5.1 Agents for Process Diagnosis 100
 6.5.2 Process Diagnosis by Evaluating Consistency
 Among Data from Sensors 102
 6.6 Related Works and Discussions 105
 6.7 Summary and Conclusion .. 106

7 A Multiagent Framework Learned
from the Immune System ... 107
 7.1 Introduction ... 107
 7.2 Concepts .. 108
 7.2.1 Specification and Description of a Basic Model 108
 7.2.2 Weighing by Balance: a Selection View 109
 7.2.3 Information Framework for Specification of Agents 111
 7.3 An Agent-Based Framework 113
 7.4 An Immune Algorithm ... 114
 7.5 Implementation of the Immune Algorithm 117
 7.6 Domains for the Immune Algorithm 118
 7.7 Related Works and Discussions 119
 7.8 Summary and Conclusion .. 120

8 An Application of the Immune Algorithm
with an Agent Framework ... 121
 8.1 Introduction ... 121
 8.2 Self-Nonself Counterparts in Noise Neutralization 122
 8.3 Application of the Immune Algorithm
 to Adaptive Noise Neutralization 123
 8.3.1 Control Architecture 123
 8.4 Adaptive Noise Neutralization by the Immune Algorithm 127
 8.4.1 Simulation and Performance of the Noise Neutralizer ... 128
 8.4.2 A New Initial Set of Gene Data 130
XII Contents

8.4.3 Filtering Self-Reactive Agents .. 133
8.5 Related Works and Discussions .. 134
8.6 Summary and Conclusion .. 135

9 Information Flow, Biological Field,
and Autonomous Distributed Systems 139
9.1 Introduction ... 139
9.2 Autonomous Distributed Systems and Field 139
 9.2.1 Self-Organization in Autonomous
 Distributed Systems .. 141
9.3 Information-Flow Characteristics
 of Autonomous Distributed Systems 143
 9.3.1 Designing Autonomous Distributed Systems 147
 9.3.2 The Immune System as a Prototype
 of Autonomous Distributed Systems 148
 9.3.3 The Immune System as a Self-Defining Process 149
9.4 Summary ... 149

10 The Immune System as a Self-Defining Process 151
10.1 Introduction ... 151
10.2 Specification of Immunity-Based Systems
 Based on Self–Nonself Discrimination 152
 10.2.1 Self–Nonself Counterparts in Design 152
 10.2.2 From the Viewpoint of Fault Diagnosis 153
 10.2.3 A Design of Agents ... 154
10.3 Toward the Immunity-Based Systems Induced
 from the Self-Defining Process 155
 10.3.1 Seamless Extension from the Developmental Phase 155
 10.3.2 Toward a System Theory of Self-Defining Processes ... 156
 10.3.3 Fusion and Rejection in Mutually Supporting Collectives 158
 10.3.4 The Self-Defining Process in the Computer Network 161
 10.3.5 Self-Definition in the Immune System and Consciousness 162
10.4 Summary and Conclusion .. 163

11 Conclusions ... 165

References ... 167

Index ... 175
Immunity-Based Systems
A Design Perspective
Ishida, Y.
2004, XII, 177 p., Hardcover
ISBN: 978-3-540-00896-5