Contents

Introduction 3

1 Development of the theory of motion for systems with Coulomb friction 11

1.1 Coulomb’s law of friction 11

1.2 Main peculiarities of systems with Coulomb friction and the specific problems of the theory of motion 12

1.2.1 The principle peculiarity 13

1.2.2 Non-closed system of equations for the dynamics of systems with friction and the problem of deriving these equations 14

1.2.3 Non-correctness of the equations for systems with friction and the problem of solving Painlevé’s paradoxes 15

1.2.4 The problem of determining the forces of friction acting on particles 17

1.2.5 Retaining the state of rest and transition to motion 18

1.2.6 The problem of determining the property of self-braking 19

1.2.7 Appearance of self-excited oscillations 19

1.3 Various interpretations of Painlevé’s paradoxes 20

1.4 Principles of the general theory of systems with Coulomb friction 25

1.5 Laws of Coulomb friction and the theory of frictional self-excited oscillations 32
2 Systems with a single degree of freedom and a single frictional pair

2.1 Lagrange’s equations with a removed contact constraint

2.2 Kinematic expression for slip with rolling

2.2.1 Velocity of slip and the velocities of change of the contact place due to the trace of the contact

2.2.2 Angular velocity

2.3 Equation for the constraint force and Painlevé’s paradoxes

2.3.1 Solution for the acceleration and the constraint force

2.3.2 Criterion for the paradoxes

2.4 Immovable contact and transition to slipping

2.5 Self-braking and the angle of stagnation

2.5.1 The case of no paradoxes

2.5.2 The case of paradoxes ($\mu|L| > 1$)

3 Accounting for dry friction in mechanisms. Examples of single-degree-of-freedom systems with a single frictional pair

3.1 Two simple examples

3.1.1 First example

3.1.2 Second example

3.2 The Painlevé-Klein extended scheme

3.2.1 Differential equations of motion, expression for the reaction force, condition for the paradoxes and the law of motion

3.2.2 Immovable contact and transition to slip

3.2.3 The stagnation angle and the property of self-braking in the case of no paradoxes

3.2.4 Self-braking under the condition of paradoxes

3.3 Stacker

3.3.1 Pure rolling of the rigid body model

3.3.2 Slip of the driving wheel for the rigid body model

3.3.3 Speed-up of stacker

3.3.4 Pure rolling in the case of tangential compliance

3.3.5 Rolling with account of compliance

3.3.6 Speed-up with account of compliance

3.3.7 Numerical example

3.4 Epicyclic mechanism with cylindric teeth of the involute gearing

3.4.1 Differential equation of motion, equations for the reaction force and the conditions for paradoxes

3.4.2 Relationships between the torques at rest and in the transition to motion

3.4.3 Regime of uniform motion

3.5 Gear transmission with immovable rotation axes
3.5.1 Differential equations of motion and the condition for absence of paradoxes .. 104
3.5.2 Regime of uniform motion .. 106
3.5.3 Transition from the state of rest to motion 109

3.6 Crank mechanism .. 110
3.6.1 Equation of motion and reaction force 110
3.6.2 Condition for complete absence of paradoxes 112
3.6.3 The property of self-braking in the case of no paradoxes 114

3.7 Link mechanism of a planning machine 115
3.7.1 Differential equations of motion and the expression for the reaction force .. 115
3.7.2 Feasibility of Painlevé’s paradoxes 119
3.7.3 The property of self-braking 121
3.7.4 Numerical example .. 123

4 Systems with many degrees of freedom and a single frictional pair. Solving Painlevé’s paradoxes 125
4.1 Lagrange’s equations with a removed constraint 125
4.2 Equation for the constraint force, differential equation of motion and the criterion of paradoxes 128
4.2.1 Determination of the constraint force and acceleration 128
4.2.2 Criterion of Painlevé’s paradoxes 131
4.3 Determination of the true motion 132
4.3.1 Limiting process .. 133
4.3.2 True motions under the paradoxes 137
4.4 True motions in the Painlevé-Klein problem in paradoxical situations ... 141
4.4.1 Equations for the reaction force 142
4.4.2 True motions for the paradoxes 143
4.5 Elliptic pendulum ... 145
4.6 The Zhukovsky-Froude pendulum 148
4.6.1 Equation for the reaction force and condition for the non-existence of the solution 150
4.6.2 The equilibrium position and free oscillations 152
4.6.3 Regime of joint rotation of the journal and the pin 153
4.7 A condition of instability for the stationary regime of metal cutting ... 155
4.7.1 Derivation of the equations of motion 155
4.7.2 Solving the equations ... 157
4.7.3 Relationship between instability of cutting and Painlevé’s paradox ... 159
4.7.4 Boring with an axial feed ... 161
5 Systems with several frictional pairs. Painlevé’s law of friction. Equations for the perturbed motion taking account of contact compliance

5.1 Equations for systems with Coulomb friction 163
5.1.1 System with removed constraints 163
5.1.2 Solving the main system 166
5.1.3 The case of \(n = 1, m = 1 \) 169

5.2 Mathematical description of the Painlevé law of friction 170
5.2.1 Accelerations due to two systems of external forces 170
5.2.2 Improved Painlevé’s equations 172
5.2.3 Improved Painlevé’s theorem 174

5.3 Forces of friction in the Painlevé-Klein problem 176

5.4 The contact compliance and equations of perturbed trajectories 177
5.4.1 Lagrange’s equations for systems with elastic contact joints 177
5.4.2 Equations for perturbed reaction forces 179

5.5 Painlevé’s scheme with two frictional pairs 181
5.5.1 Lagrange’s equations, reaction forces and the equations of motion with eliminated reaction forces 182
5.5.2 Feasibility of Painlevé’s paradoxes 184
5.5.3 Expressions for the frictional force in terms of the friction coefficients 185
5.5.4 Painlevé’s scheme for compliant contacts 186

5.6 Sliders of metal-cutting machine tools 187
5.6.1 Derivation of equations of motion and expressions for the reaction forces 187
5.6.2 Signs of the reaction forces and feasibility of paradoxes 189
5.6.3 Forces of friction 191

5.7 Concluding remarks about Painlevé’s paradoxes 192
5.7.1 On equations of systems with Coulomb friction 192
5.7.2 On conditions of the paradoxes 193
5.7.3 On the reasons for the paradoxes 193
5.7.4 On the laws of motion in the paradoxical situations 193
5.7.5 On the initial motion of an immovable contact 194
5.7.6 On self-braking 194
5.7.7 On the mathematical description of Painlevé’s law 195
5.7.8 On examples 195

6 Experimental investigations into the force of friction under self-excited oscillations

6.1 Experimental setups 198
6.1.1 The first setup 198
6.1.2 The second setup 200
6.1.3 The third setup 201
6.2 Determining the forces by means of an oscillogram ... 202
6.3 Change in the force of friction under break-down of the maximum friction in the case of a change in the velocity of motion ... 206
6.4 Dependence of the friction force on the rate of tangential loading ... 209
6.5 Plausibility of the dependence $F_f(f)$.. 213
 6.5.1 Control tests .. 213
 6.5.2 Estimating the numerical characteristics .. 213
 6.5.3 Statistical properties of the dependences .. 214
 6.5.4 Test data of other authors ... 215
6.6 Characteristic of the force of sliding friction .. 215

7 Force and small displacement in the contact ... 217
 7.1 Components of the small displacement .. 217
 7.1.1 Definition of break-down and initial break-down .. 217
 7.1.2 Reversible and irreversible components ... 218
 7.1.3 Influence of the intermediate stop and reverse on the irreversible displacement ... 220
 7.1.4 Dependence of the total small displacement on the rate of tangential loading ... 222
 7.1.5 Small displacement of parts of the contact ... 223
 7.1.6 Comparing the values of small displacement with existing data ... 225
 7.2 Remarks on friction between steel and polyamide .. 226
 7.2.1 On critical values of the force of friction .. 226
 7.2.2 Time lag of small displacement .. 226
 7.2.3 Immovable and viscous components of the force of friction 229
 7.3 Conclusions .. 230

8 Frictional self-excited oscillations .. 231
 8.1 Self-excited oscillations due to hard excitation .. 231
 8.1.1 The case of no structural damping .. 231
 8.1.2 Including damping ... 237
 8.2 Self-excited oscillations under both hard and soft excitations ... 240
 8.2.1 Equations of motion .. 240
 8.2.2 Critical velocities .. 242
 8.2.3 Amplitude of auto-oscillation .. 244
 8.2.4 Period of auto-oscillation .. 246
 8.2.5 Self-excitation of systems ... 247
 8.3 Accuracy of the displacement ... 249

References ... 255

Index ... 268
Dynamics of Mechanical Systems with Coulomb Friction
Le Xuan Anh
2003, IV, 272 p., Hardcover
ISBN: 978-3-540-00654-1